lianghsun's picture
Update README.md
8b6dd4c verified
metadata
license: llama3.2
language:
  - en
  - zh
base_model:
  - meta-llama/Llama-3.2-3B
library_name: transformers
tags:
  - Taiwan
  - R.O.C
  - zhtw
  - SLM
  - Llama-32
datasets:
  - lianghsun/tw-reasoning-instruct
  - minyichen/tw-instruct-R1-200k
  - minyichen/tw_mm_R1
model-index:
  - name: Llama-3.2-3B-F1-Instruct
    results:
      - task:
          type: question-answering
          name: Single Choice Question
        dataset:
          type: ikala/tmmluplus
          name: tmmlu+
          config: all
          split: test
          revision: c0e8ae955997300d5dbf0e382bf0ba5115f85e8c
        metrics:
          - name: single choice
            type: accuracy
            value: 42.21

Model Card for Llama-3.2-3B-F1-Instruct

Note: The checkpoint for this model will be released soon. Please stay tuned. 🙏

Llama-3.2-3B-F1-Instruct 是由 Twinkle AIAPMIC 合作開發,並在國家高速網路與計算中心技術指導之下,針對中華民國台灣語境與任務需求所微調之繁體中文語言模型,涵蓋法律、教育、生活應用等多元場景,並以高指令跟隨能力為目標進行強化。

Model Details

Model Description

Model Sources

Evaluation

Results

下表採用 🌟 Twinkle Eval 評測框架

模型 評測模式 TMMLU+(%) 台灣法律(%) MMLU(%) 測試次數 選項排序
mistralai/Mistral-Small-24B-Instruct-2501 box 56.15 (±0.0172) 37.48 (±0.0098) 74.61 (±0.0154) 3 隨機
meta-llama/Llama-3.2-3B-Instruct box 15.49 (±0.0104) 25.68 (±0.0200) 6.90 (±0.0096) 3 隨機
meta-llama/Llama-3.2-3B-Instruct pattern 35.85 (±0.0174) 32.22 (±0.0023) 59.33 (±0.0168) 3 隨機
MediaTek-Research/Llama-Breeze2-3B-Instruct pattern 40.32 (±0.0181) 38.92 (±0.0193) 55.37 (±0.0180) 3 隨機
twinkle-ai/Llama-3.2-3B-F1-Instruct (ours) box 42.18 (±0.0197) 31.26 (±0.0354) 52.07 (±0.0189) 3 隨機

下表用 lighteval 評測框架

模型 MATH-500 GPQA Diamond
meta-llama/Llama-3.2-3B-Instruct 44.40 27.78
twinkle-ai/Llama-3.2-3B-F1-Instruct (ours) 51.40 33.84

Citation

@misc{twinkleai2025llama3.2f1,
  title        = {Llama-3.2-3B-F1-Instruct: A Traditional Chinese Instruction-Tuned Language Model for Taiwan},
  author       = {Huang, Liang Hsun and Chen, Min Yi and Lin, Wen Bin and Chuang, Chao Chun and Sung, Dave},
  year         = {2025},
  howpublished = {\url{https://huggingface.co/twinkle-ai/Llama-3.2-3B-F1-Instruct}},
  note         = {Twinkle AI and APMIC. All authors contributed equally.}
}

Acknowledge

特此感謝國家高速網路與計算中心的指導與 APMIC 的算力支援,才得以讓本專案訓利完成。

Model Card Authors

Twinkle AI

Model Card Contact

Twinkle AI