tukhtashevshohruh's picture
Create README.md
53ba5ad verified
metadata
license: mit
language:
  - uz
metrics:
  - precision
  - recall
  - f1
base_model:
  - FacebookAI/xlm-roberta-base
library_name: transformers

xlm-roberta-base-lowercase

This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.16673
  • Precision: 0.5710
  • Recall: 0.6137
  • F1: 0.5916

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
0.1949 1.0 2206 0.1788 0.5315 0.5391 0.5353
0.1669 2.0 4412 0.1670 0.5353 0.5995 0.5656
0.1361 3.0 6618 0.1667 0.5710 0.6137 0.5916

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0