Psyfighter2-Orca2-ties
Psyfighter2-Orca2-ties is a merge of the following models using mergekit:
This is my very first merge I have ever attempted. The motivation behind this merge is to try and create a 13B version of jebcarter/psyonic-cetacean-20B. I don't have a good GPU (GTX 1660 6GB), so although I can merge the model, I cannot actually run it. However, the Open LLM Leaderboard ranks this merge with 63.48 avg point, which is higher than both KoboldAI/LLaMA2-13B-Psyfighter2 and jebcarter/psyonic-cetacean-20B, so I must did something right. The next step is to quantize this merge into GGUF so I can actually run it with KoboldCpp.
🧩 Configuration
models:
- model: KoboldAI/LLaMA2-13B-Psyfighter2
- model: microsoft/Orca-2-13b
parameters:
density: 0.40
weight: [0, 0.3, 0.7, 1]
merge_method: ties
base_model: KoboldAI/LLaMA2-13B-Psyfighter2
parameters:
normalize: true
int8_mask: true
dtype: float16
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 63.48 |
AI2 Reasoning Challenge (25-Shot) | 62.46 |
HellaSwag (10-Shot) | 81.74 |
MMLU (5-Shot) | 60.31 |
TruthfulQA (0-shot) | 55.40 |
Winogrande (5-shot) | 77.27 |
GSM8k (5-shot) | 43.67 |
- Downloads last month
- 209
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for tuantran1632001/Psyfighter2-Orca2-13B-ties
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard62.460
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard81.740
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard60.310
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard55.400
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard77.270
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard43.670