fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g2.0-0.05_10_0.004_40

This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.0758
  • Wer: 0.0993

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Wer
1625.3502 0.94 50 806.0434 15.8991
1410.0119 1.89 100 629.8961 16.0119
709.9929 2.83 150 85.9791 0.9988
90.0141 3.77 200 65.2759 1.0
83.76 4.72 250 63.1484 1.0
80.6192 5.66 300 61.0757 1.0
77.8424 6.6 350 59.5632 1.0
74.3949 7.55 400 58.2095 1.0
72.7863 8.49 450 57.4982 1.0
73.4921 9.43 500 57.0917 1.0
72.5605 10.38 550 57.0573 1.0
73.0506 11.32 600 57.1200 1.0
70.646 12.26 650 57.6753 0.9994
68.9098 13.21 700 52.4541 0.9763
55.5991 14.15 750 26.6825 0.4343
30.2222 15.09 800 14.2918 0.2538
20.0258 16.04 850 10.1003 0.1932
15.5053 16.98 900 8.1504 0.1790
12.741 17.92 950 6.8064 0.1565
11.3321 18.87 1000 6.2718 0.1492
10.2277 19.81 1050 5.6648 0.1443
9.2196 20.75 1100 5.0958 0.1292
8.7783 21.7 1150 5.0376 0.1368
8.1951 22.64 1200 4.7069 0.1261
7.5671 23.58 1250 4.5874 0.1290
7.0327 24.53 1300 4.3482 0.1169
7.0547 25.47 1350 4.0875 0.1154
6.4848 26.42 1400 4.0527 0.1185
6.4467 27.36 1450 3.9355 0.1162
6.1179 28.3 1500 3.8567 0.1187
5.8745 29.25 1550 3.8254 0.1162
5.6889 30.19 1600 3.7496 0.1079
5.3704 31.13 1650 3.8083 0.1093
5.5541 32.08 1700 3.7809 0.1057
5.353 33.02 1750 3.6145 0.1032
5.1094 33.96 1800 3.5845 0.1086
4.8619 34.91 1850 3.6174 0.1077
4.9216 35.85 1900 3.4465 0.1014
4.8789 36.79 1950 3.3949 0.0954
4.4445 37.74 2000 3.3273 0.0945
4.5174 38.68 2050 3.3895 0.1003
4.3901 39.62 2100 3.3033 0.0997
4.3151 40.57 2150 3.2694 0.0963
4.1073 41.51 2200 3.3102 0.1007
4.0983 42.45 2250 3.3103 0.1111
4.0334 43.4 2300 3.3534 0.1086
4.0756 44.34 2350 3.3035 0.1055
3.9379 45.28 2400 3.3220 0.1031
3.6192 46.23 2450 3.2740 0.1019
3.6579 47.17 2500 3.2513 0.1012
3.4756 48.11 2550 3.2198 0.0973
3.548 49.06 2600 3.1895 0.1028
3.4199 50.0 2650 3.2025 0.1011
3.3485 50.94 2700 3.1908 0.1033
3.4955 51.89 2750 3.2124 0.1018
3.0636 52.83 2800 3.2538 0.1074
3.3026 53.77 2850 3.1777 0.1017
3.2866 54.72 2900 3.2008 0.1018
3.0405 55.66 2950 3.2269 0.1057
2.9104 56.6 3000 3.2111 0.1017
3.1029 57.55 3050 3.2158 0.1001
3.0138 58.49 3100 3.2130 0.1039
2.9072 59.43 3150 3.1995 0.0991
3.0077 60.38 3200 3.2179 0.1016
2.7565 61.32 3250 3.1346 0.0953
2.9245 62.26 3300 3.1797 0.1009
2.6777 63.21 3350 3.1870 0.1069
2.7601 64.15 3400 3.2077 0.1004
2.6767 65.09 3450 3.1921 0.0982
2.7252 66.04 3500 3.1475 0.0972
2.7375 66.98 3550 3.1569 0.0992
2.7624 67.92 3600 3.1613 0.0980
2.5993 68.87 3650 3.1353 0.0948
2.6334 69.81 3700 3.0991 0.0961
2.5925 70.75 3750 3.0972 0.0988
2.6538 71.7 3800 3.1004 0.0954
2.5137 72.64 3850 3.0980 0.0956
2.4971 73.58 3900 3.0919 0.0968
2.3636 74.53 3950 3.0861 0.0938
2.6246 75.47 4000 3.1040 0.0959
2.5092 76.42 4050 3.0918 0.0949
2.5617 77.36 4100 3.0869 0.0960
2.4673 78.3 4150 3.0836 0.0988
2.4177 79.25 4200 3.0862 0.0962
2.533 80.19 4250 3.0585 0.0979
2.4484 81.13 4300 3.0875 0.1022
2.4034 82.08 4350 3.0803 0.0993
2.3971 83.02 4400 3.0964 0.0991
2.3776 83.96 4450 3.0840 0.0972
2.529 84.91 4500 3.0982 0.1002
2.3854 85.85 4550 3.0903 0.0992
2.4461 86.79 4600 3.0840 0.0981
2.4031 87.74 4650 3.0963 0.1006
2.4072 88.68 4700 3.0897 0.0976
2.398 89.62 4750 3.0871 0.0998
2.1919 90.57 4800 3.0778 0.0995
2.5859 91.51 4850 3.0781 0.1003
2.1701 92.45 4900 3.0706 0.0983
2.4991 93.4 4950 3.0815 0.0992
2.3048 94.34 5000 3.0771 0.0988
2.2576 95.28 5050 3.0785 0.0993
2.3997 96.23 5100 3.0770 0.0987
2.3028 97.17 5150 3.0766 0.0986
2.397 98.11 5200 3.0765 0.0991
2.3609 99.06 5250 3.0757 0.0990
2.4194 100.0 5300 3.0758 0.0993

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
0
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g2.0-0.05_10_0.004_40

Finetuned
(57)
this model