fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g2.0-0.05_10_0.004_40
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vietnamese-250h on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.0758
- Wer: 0.0993
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1625.3502 | 0.94 | 50 | 806.0434 | 15.8991 |
1410.0119 | 1.89 | 100 | 629.8961 | 16.0119 |
709.9929 | 2.83 | 150 | 85.9791 | 0.9988 |
90.0141 | 3.77 | 200 | 65.2759 | 1.0 |
83.76 | 4.72 | 250 | 63.1484 | 1.0 |
80.6192 | 5.66 | 300 | 61.0757 | 1.0 |
77.8424 | 6.6 | 350 | 59.5632 | 1.0 |
74.3949 | 7.55 | 400 | 58.2095 | 1.0 |
72.7863 | 8.49 | 450 | 57.4982 | 1.0 |
73.4921 | 9.43 | 500 | 57.0917 | 1.0 |
72.5605 | 10.38 | 550 | 57.0573 | 1.0 |
73.0506 | 11.32 | 600 | 57.1200 | 1.0 |
70.646 | 12.26 | 650 | 57.6753 | 0.9994 |
68.9098 | 13.21 | 700 | 52.4541 | 0.9763 |
55.5991 | 14.15 | 750 | 26.6825 | 0.4343 |
30.2222 | 15.09 | 800 | 14.2918 | 0.2538 |
20.0258 | 16.04 | 850 | 10.1003 | 0.1932 |
15.5053 | 16.98 | 900 | 8.1504 | 0.1790 |
12.741 | 17.92 | 950 | 6.8064 | 0.1565 |
11.3321 | 18.87 | 1000 | 6.2718 | 0.1492 |
10.2277 | 19.81 | 1050 | 5.6648 | 0.1443 |
9.2196 | 20.75 | 1100 | 5.0958 | 0.1292 |
8.7783 | 21.7 | 1150 | 5.0376 | 0.1368 |
8.1951 | 22.64 | 1200 | 4.7069 | 0.1261 |
7.5671 | 23.58 | 1250 | 4.5874 | 0.1290 |
7.0327 | 24.53 | 1300 | 4.3482 | 0.1169 |
7.0547 | 25.47 | 1350 | 4.0875 | 0.1154 |
6.4848 | 26.42 | 1400 | 4.0527 | 0.1185 |
6.4467 | 27.36 | 1450 | 3.9355 | 0.1162 |
6.1179 | 28.3 | 1500 | 3.8567 | 0.1187 |
5.8745 | 29.25 | 1550 | 3.8254 | 0.1162 |
5.6889 | 30.19 | 1600 | 3.7496 | 0.1079 |
5.3704 | 31.13 | 1650 | 3.8083 | 0.1093 |
5.5541 | 32.08 | 1700 | 3.7809 | 0.1057 |
5.353 | 33.02 | 1750 | 3.6145 | 0.1032 |
5.1094 | 33.96 | 1800 | 3.5845 | 0.1086 |
4.8619 | 34.91 | 1850 | 3.6174 | 0.1077 |
4.9216 | 35.85 | 1900 | 3.4465 | 0.1014 |
4.8789 | 36.79 | 1950 | 3.3949 | 0.0954 |
4.4445 | 37.74 | 2000 | 3.3273 | 0.0945 |
4.5174 | 38.68 | 2050 | 3.3895 | 0.1003 |
4.3901 | 39.62 | 2100 | 3.3033 | 0.0997 |
4.3151 | 40.57 | 2150 | 3.2694 | 0.0963 |
4.1073 | 41.51 | 2200 | 3.3102 | 0.1007 |
4.0983 | 42.45 | 2250 | 3.3103 | 0.1111 |
4.0334 | 43.4 | 2300 | 3.3534 | 0.1086 |
4.0756 | 44.34 | 2350 | 3.3035 | 0.1055 |
3.9379 | 45.28 | 2400 | 3.3220 | 0.1031 |
3.6192 | 46.23 | 2450 | 3.2740 | 0.1019 |
3.6579 | 47.17 | 2500 | 3.2513 | 0.1012 |
3.4756 | 48.11 | 2550 | 3.2198 | 0.0973 |
3.548 | 49.06 | 2600 | 3.1895 | 0.1028 |
3.4199 | 50.0 | 2650 | 3.2025 | 0.1011 |
3.3485 | 50.94 | 2700 | 3.1908 | 0.1033 |
3.4955 | 51.89 | 2750 | 3.2124 | 0.1018 |
3.0636 | 52.83 | 2800 | 3.2538 | 0.1074 |
3.3026 | 53.77 | 2850 | 3.1777 | 0.1017 |
3.2866 | 54.72 | 2900 | 3.2008 | 0.1018 |
3.0405 | 55.66 | 2950 | 3.2269 | 0.1057 |
2.9104 | 56.6 | 3000 | 3.2111 | 0.1017 |
3.1029 | 57.55 | 3050 | 3.2158 | 0.1001 |
3.0138 | 58.49 | 3100 | 3.2130 | 0.1039 |
2.9072 | 59.43 | 3150 | 3.1995 | 0.0991 |
3.0077 | 60.38 | 3200 | 3.2179 | 0.1016 |
2.7565 | 61.32 | 3250 | 3.1346 | 0.0953 |
2.9245 | 62.26 | 3300 | 3.1797 | 0.1009 |
2.6777 | 63.21 | 3350 | 3.1870 | 0.1069 |
2.7601 | 64.15 | 3400 | 3.2077 | 0.1004 |
2.6767 | 65.09 | 3450 | 3.1921 | 0.0982 |
2.7252 | 66.04 | 3500 | 3.1475 | 0.0972 |
2.7375 | 66.98 | 3550 | 3.1569 | 0.0992 |
2.7624 | 67.92 | 3600 | 3.1613 | 0.0980 |
2.5993 | 68.87 | 3650 | 3.1353 | 0.0948 |
2.6334 | 69.81 | 3700 | 3.0991 | 0.0961 |
2.5925 | 70.75 | 3750 | 3.0972 | 0.0988 |
2.6538 | 71.7 | 3800 | 3.1004 | 0.0954 |
2.5137 | 72.64 | 3850 | 3.0980 | 0.0956 |
2.4971 | 73.58 | 3900 | 3.0919 | 0.0968 |
2.3636 | 74.53 | 3950 | 3.0861 | 0.0938 |
2.6246 | 75.47 | 4000 | 3.1040 | 0.0959 |
2.5092 | 76.42 | 4050 | 3.0918 | 0.0949 |
2.5617 | 77.36 | 4100 | 3.0869 | 0.0960 |
2.4673 | 78.3 | 4150 | 3.0836 | 0.0988 |
2.4177 | 79.25 | 4200 | 3.0862 | 0.0962 |
2.533 | 80.19 | 4250 | 3.0585 | 0.0979 |
2.4484 | 81.13 | 4300 | 3.0875 | 0.1022 |
2.4034 | 82.08 | 4350 | 3.0803 | 0.0993 |
2.3971 | 83.02 | 4400 | 3.0964 | 0.0991 |
2.3776 | 83.96 | 4450 | 3.0840 | 0.0972 |
2.529 | 84.91 | 4500 | 3.0982 | 0.1002 |
2.3854 | 85.85 | 4550 | 3.0903 | 0.0992 |
2.4461 | 86.79 | 4600 | 3.0840 | 0.0981 |
2.4031 | 87.74 | 4650 | 3.0963 | 0.1006 |
2.4072 | 88.68 | 4700 | 3.0897 | 0.0976 |
2.398 | 89.62 | 4750 | 3.0871 | 0.0998 |
2.1919 | 90.57 | 4800 | 3.0778 | 0.0995 |
2.5859 | 91.51 | 4850 | 3.0781 | 0.1003 |
2.1701 | 92.45 | 4900 | 3.0706 | 0.0983 |
2.4991 | 93.4 | 4950 | 3.0815 | 0.0992 |
2.3048 | 94.34 | 5000 | 3.0771 | 0.0988 |
2.2576 | 95.28 | 5050 | 3.0785 | 0.0993 |
2.3997 | 96.23 | 5100 | 3.0770 | 0.0987 |
2.3028 | 97.17 | 5150 | 3.0766 | 0.0986 |
2.397 | 98.11 | 5200 | 3.0765 | 0.0991 |
2.3609 | 99.06 | 5250 | 3.0757 | 0.0990 |
2.4194 | 100.0 | 5300 | 3.0758 | 0.0993 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tuanio/fine-w2v2base-bs16-ep100-lr2e-05-linguistic-rmsnorm-focal_ctc_a0.75_g2.0-0.05_10_0.004_40
Base model
nguyenvulebinh/wav2vec2-base-vietnamese-250h