Model Card for Model ID
A DPO qLORA finetune of Mistral Nemo 12b on four Gutenberg datasets, approx ~6.3k lines.
Model Details
Model Description
Finetuned for 1 epoch on an A100 through Vast.AI.
Credits
Thank you to Axolotl for making finetuning easier. Thank you to Docker for... existing, I guess.
YML Configuration
base_model: SicariusSicariiStuff/Impish_Nemo_12B
load_in_8bit: false
load_in_4bit: true
adapter: qlora
gradient_accumulation_steps: 8
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
sequence_len: 4096
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
bf16: true
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
logging_steps: 1
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
rl: dpo
datasets:
- path: sam-paech/gutenberg3-generalfiction-scifi-fantasy-romance-adventure-dpo
split: train
type: chatml.prompt_pairs
- path: nbeerbower/gutenberg-moderne-dpo
split: train
type: chatml.prompt_pairs
- path: nbeerbower/gutenberg2-dpo
split: train
type: chatml.prompt_pairs
- path: jondurbin/gutenberg-dpo-v0.1
split: train
type: chatml.prompt_pairs
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/lora-out
- Downloads last month
- 21
Model tree for tssst/nemo-gutenberg-12b-v1
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407
Finetuned
SicariusSicariiStuff/Impish_Nemo_12B