axl-tif-images-v1
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1686
- Accuracy: 0.9583
- F1: 0.9576
- Precision: 0.9608
- Recall: 0.9583
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5574 | 1.0 | 24 | 0.3268 | 0.9583 | 0.9576 | 0.9608 | 0.9583 |
0.2038 | 2.0 | 48 | 0.1576 | 0.9583 | 0.9576 | 0.9608 | 0.9583 |
0.0568 | 3.0 | 72 | 0.3077 | 0.9167 | 0.9132 | 0.9259 | 0.9167 |
0.0661 | 4.0 | 96 | 0.1585 | 0.9583 | 0.9589 | 0.9630 | 0.9583 |
0.0648 | 5.0 | 120 | 0.0147 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0185 | 6.0 | 144 | 0.0130 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0113 | 7.0 | 168 | 0.0113 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0463 | 8.0 | 192 | 0.1764 | 0.9583 | 0.9589 | 0.9630 | 0.9583 |
0.1297 | 9.0 | 216 | 0.0098 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0763 | 10.0 | 240 | 0.1686 | 0.9583 | 0.9576 | 0.9608 | 0.9583 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 31
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for truskovskiyk/axl-tif-images-v1
Base model
google/vit-base-patch16-224-in21k