Revela
Collection
8 items
โข
Updated
Revela-500M is a self-supervised bi-encoder dense-retriever trained with the Revela objective on raw Wikipedia text.
It uses the 500 M-parameter Qwen 2.5-0.5B backbone and was trained on 320 K Wikipedia batches (batch size = 16).
The in-batch attention mechanism enables fully self-supervised learning without manually-mined relevance labels.
See the paper for full details.
Binary | Description |
---|---|
trumancai/Revela-1b | 1 B-parameter variant (LLaMA-3.2-1B backbone). |
trumancai/Revela-500M | โ current repo |
trumancai/Revela-135M | 135 M-parameter variant (SmolLM2-135M backbone). |
trumancai/Revela-code-1b | 1 B-parameter code-retriever. |
trumancai/Revela-code-500M | 500 M-parameter code-retriever. |
trumancai/Revela-code-135M | 135 M-parameter code-retriever. |
trumancai/revela_training_corpus | Wikipedia training corpus. |
trumancai/revela_code_training_corpus | Code training corpus. |
Evaluate with the customised mteb fork:
from mteb.model_meta import ModelMeta
from mteb.models.repllama_models import RepLLaMAWrapper, _loader
import mteb, torch
revela_qwen_500m = ModelMeta(
loader=_loader(
RepLLaMAWrapper,
base_model_name_or_path="Qwen/Qwen2.5-0.5B",
peft_model_name_or_path="trumancai/Revela-500M",
device_map="auto",
torch_dtype=torch.bfloat16,
),
name="trumancai/Revela-500M",
languages=["eng_Latn"],
open_source=True,
revision="2206071b5fe41cdae695dd705b4ccc6afc63f759",
release_date="2025-04-13",
)
model = revela_qwen_500m.loader()
mteb.MTEB(tasks=["SciFact", "NFCorpus"]).run(model=model, output_folder="results/Revela-500M")
Base model
Qwen/Qwen2.5-0.5B