See axolotl config
axolotl version: 0.12.2
base_model: Qwen/Qwen3-8B
strict: false
chat_template: tokenizer_default
datasets:
- path: trillionlabs/android_control_ER_index_1000
type: chat_template
split: train
field_messages: messages
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
dataset_prepared_path: datasets/android_control_ER_index_1000_prepared
val_set_size: 0.01
output_dir: ./outputs/sft_android_control_ER_index_1000
hub_model_id: trillionlabs/android_control_ER_index_1000
sequence_len: 6144
sample_packing: false
pad_to_sequence_len: false
wandb_project: axolotl
wandb_entity: suyeong_korea_univ-korea-university
wandb_name: android_control_ER_index_1000
gradient_accumulation_steps: 2
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 3e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
max_prompt_len: 6144
warmup_steps: 50
evals_per_epoch: 0
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: true
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
fsdp_backward_prefetch: BACKWARD_PRE
special_tokens:
pad_token: <|pad_token|>
eos_token: <|im_end|>
seed: 11
android_control_ER_index_1000
This model is a fine-tuned version of Qwen/Qwen3-8B on the trillionlabs/android_control_ER_index_1000 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 11
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 689
Training results
Framework versions
- PEFT 0.17.0
- Transformers 4.56.0
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 4