👨🔥💢ViSoBERT human finetune syllable
Collection
ViSoBERT model, finetuned on ViHSD dataset in syllable-level. Numbers denote different training seeds.
•
5 items
•
Updated
This model is a fine-tuned version of uitnlp/visobert on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 346 | 0.3353 | 0.8713 | 0.6931 | 0.6726 | 0.6552 |
0.3376 | 2.0 | 692 | 0.3359 | 0.8754 | 0.6944 | 0.7094 | 0.7017 |
0.1869 | 3.0 | 1038 | 0.4110 | 0.8799 | 0.7237 | 0.6770 | 0.6954 |
0.1869 | 4.0 | 1384 | 0.5216 | 0.8817 | 0.7252 | 0.6885 | 0.7049 |
0.0958 | 5.0 | 1730 | 0.6614 | 0.8776 | 0.7356 | 0.6392 | 0.6767 |
0.066 | 6.0 | 2076 | 0.6590 | 0.8832 | 0.7296 | 0.6721 | 0.6974 |
0.066 | 7.0 | 2422 | 0.7182 | 0.8739 | 0.7054 | 0.6741 | 0.6887 |
0.0452 | 8.0 | 2768 | 0.6803 | 0.8761 | 0.7042 | 0.6881 | 0.6880 |
0.0361 | 9.0 | 3114 | 0.6431 | 0.8765 | 0.7141 | 0.6503 | 0.6770 |
Base model
uitnlp/visobert