👨🔥💢ViSoBERT human finetune syllable
Collection
ViSoBERT model, finetuned on ViHSD dataset in syllable-level. Numbers denote different training seeds.
•
5 items
•
Updated
This model is a fine-tuned version of uitnlp/visobert on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 346 | 0.3479 | 0.8675 | 0.6877 | 0.6587 | 0.6359 |
0.3396 | 2.0 | 692 | 0.3445 | 0.8799 | 0.7140 | 0.6864 | 0.6986 |
0.1864 | 3.0 | 1038 | 0.4053 | 0.8795 | 0.7170 | 0.6573 | 0.6834 |
0.1864 | 4.0 | 1384 | 0.5250 | 0.875 | 0.7251 | 0.6485 | 0.6745 |
0.0923 | 5.0 | 1730 | 0.5543 | 0.8787 | 0.7116 | 0.6867 | 0.6984 |
0.0679 | 6.0 | 2076 | 0.6802 | 0.8694 | 0.6817 | 0.6657 | 0.6721 |
0.0679 | 7.0 | 2422 | 0.6481 | 0.8821 | 0.7263 | 0.6946 | 0.7095 |
0.0492 | 8.0 | 2768 | 0.6654 | 0.8795 | 0.7171 | 0.6606 | 0.6857 |
0.0404 | 9.0 | 3114 | 0.6279 | 0.8720 | 0.6908 | 0.6872 | 0.6887 |
0.0404 | 10.0 | 3460 | 0.7850 | 0.8821 | 0.7289 | 0.6925 | 0.7041 |
0.0313 | 11.0 | 3806 | 0.8283 | 0.8765 | 0.7144 | 0.6832 | 0.6889 |
0.0303 | 12.0 | 4152 | 0.8205 | 0.8769 | 0.7206 | 0.6695 | 0.6787 |
Base model
uitnlp/visobert