phobert-human-tl-seg-seed-24
This model is a fine-tuned version of vinai/phobert-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4485
- Accuracy: 0.8432
- Precision: 0.6562
- Recall: 0.4696
- F1: 0.4951
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
No log |
1.0 |
346 |
0.5115 |
0.8252 |
0.5391 |
0.3562 |
0.3443 |
0.5974 |
2.0 |
692 |
0.4692 |
0.8387 |
0.6396 |
0.4344 |
0.4514 |
0.4599 |
3.0 |
1038 |
0.4663 |
0.8361 |
0.6226 |
0.4128 |
0.4293 |
0.4599 |
4.0 |
1384 |
0.4646 |
0.8379 |
0.6699 |
0.4218 |
0.4423 |
0.4571 |
5.0 |
1730 |
0.4580 |
0.8383 |
0.6521 |
0.4285 |
0.4490 |
0.4498 |
6.0 |
2076 |
0.4584 |
0.8402 |
0.6690 |
0.4422 |
0.4610 |
0.4498 |
7.0 |
2422 |
0.4629 |
0.8372 |
0.6626 |
0.4118 |
0.4318 |
0.4515 |
8.0 |
2768 |
0.4522 |
0.8409 |
0.6320 |
0.4529 |
0.4744 |
0.4474 |
9.0 |
3114 |
0.4536 |
0.8387 |
0.6573 |
0.4217 |
0.4438 |
0.4474 |
10.0 |
3460 |
0.4561 |
0.8439 |
0.6656 |
0.4647 |
0.4816 |
0.4509 |
11.0 |
3806 |
0.4530 |
0.8379 |
0.6461 |
0.4221 |
0.4468 |
0.4438 |
12.0 |
4152 |
0.4485 |
0.8432 |
0.6562 |
0.4696 |
0.4951 |
0.4438 |
13.0 |
4498 |
0.4501 |
0.8387 |
0.6479 |
0.4342 |
0.4618 |
0.4505 |
14.0 |
4844 |
0.4528 |
0.8387 |
0.6406 |
0.4239 |
0.4471 |
0.4421 |
15.0 |
5190 |
0.4529 |
0.8391 |
0.6485 |
0.4233 |
0.4478 |
0.45 |
16.0 |
5536 |
0.4665 |
0.8372 |
0.6692 |
0.4110 |
0.4320 |
0.45 |
17.0 |
5882 |
0.4475 |
0.8417 |
0.6431 |
0.4438 |
0.4686 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0