phobert-human-tl-seg-seed-1337
This model is a fine-tuned version of vinai/phobert-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4485
- Accuracy: 0.8432
- Precision: 0.6562
- Recall: 0.4696
- F1: 0.4951
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Accuracy |
Precision |
Recall |
F1 |
No log |
1.0 |
346 |
0.5129 |
0.8256 |
0.5419 |
0.3574 |
0.3465 |
0.5863 |
2.0 |
692 |
0.4692 |
0.8383 |
0.6389 |
0.4354 |
0.4522 |
0.4602 |
3.0 |
1038 |
0.4660 |
0.8379 |
0.6454 |
0.4193 |
0.4386 |
0.4602 |
4.0 |
1384 |
0.4646 |
0.8387 |
0.6734 |
0.4254 |
0.4468 |
0.4568 |
5.0 |
1730 |
0.4581 |
0.8379 |
0.6411 |
0.4283 |
0.4489 |
0.45 |
6.0 |
2076 |
0.4585 |
0.8402 |
0.6567 |
0.4422 |
0.4615 |
0.45 |
7.0 |
2422 |
0.4631 |
0.8372 |
0.6626 |
0.4118 |
0.4318 |
0.4516 |
8.0 |
2768 |
0.4521 |
0.8413 |
0.6343 |
0.4509 |
0.4730 |
0.4475 |
9.0 |
3114 |
0.4538 |
0.8387 |
0.6594 |
0.4217 |
0.4441 |
0.4475 |
10.0 |
3460 |
0.4563 |
0.8439 |
0.6538 |
0.4632 |
0.4790 |
0.4509 |
11.0 |
3806 |
0.4531 |
0.8383 |
0.6474 |
0.4233 |
0.4484 |
0.4438 |
12.0 |
4152 |
0.4485 |
0.8432 |
0.6562 |
0.4696 |
0.4951 |
0.4438 |
13.0 |
4498 |
0.4503 |
0.8387 |
0.6479 |
0.4342 |
0.4618 |
0.4504 |
14.0 |
4844 |
0.4528 |
0.8391 |
0.6419 |
0.4251 |
0.4486 |
0.4423 |
15.0 |
5190 |
0.4528 |
0.8387 |
0.6390 |
0.4217 |
0.4450 |
0.4495 |
16.0 |
5536 |
0.4669 |
0.8372 |
0.6662 |
0.4110 |
0.4317 |
0.4495 |
17.0 |
5882 |
0.4475 |
0.8421 |
0.6441 |
0.4451 |
0.4700 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0