👨❄🍜PhoBERT human transfer learning syllable
Collection
PhoBERT TL training for HSD - with human-reference annotated data. Numbers denote different seeds
•
5 items
•
Updated
This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 346 | 0.5169 | 0.8237 | 0.5413 | 0.3480 | 0.3291 |
0.5883 | 2.0 | 692 | 0.4718 | 0.8320 | 0.6263 | 0.4068 | 0.4201 |
0.4671 | 3.0 | 1038 | 0.4658 | 0.8335 | 0.6649 | 0.4074 | 0.4246 |
0.4671 | 4.0 | 1384 | 0.4671 | 0.8368 | 0.6924 | 0.4163 | 0.4365 |
0.4618 | 5.0 | 1730 | 0.4639 | 0.8357 | 0.6689 | 0.4144 | 0.4365 |
0.4577 | 6.0 | 2076 | 0.4606 | 0.8357 | 0.6478 | 0.4245 | 0.4437 |
0.4577 | 7.0 | 2422 | 0.4627 | 0.8357 | 0.6907 | 0.4133 | 0.4353 |
0.4555 | 8.0 | 2768 | 0.4532 | 0.8394 | 0.6546 | 0.4429 | 0.4681 |
0.4542 | 9.0 | 3114 | 0.4600 | 0.8338 | 0.6444 | 0.4071 | 0.4271 |
0.4542 | 10.0 | 3460 | 0.4604 | 0.8342 | 0.6652 | 0.4372 | 0.4540 |
0.4587 | 11.0 | 3806 | 0.4590 | 0.8357 | 0.6626 | 0.4125 | 0.4378 |
0.4489 | 12.0 | 4152 | 0.4535 | 0.8398 | 0.6509 | 0.4718 | 0.4965 |
0.4489 | 13.0 | 4498 | 0.4556 | 0.8353 | 0.6360 | 0.4202 | 0.4464 |
0.4575 | 14.0 | 4844 | 0.4565 | 0.8361 | 0.6533 | 0.4141 | 0.4378 |
0.449 | 15.0 | 5190 | 0.4597 | 0.8335 | 0.6578 | 0.4008 | 0.4203 |
0.4588 | 16.0 | 5536 | 0.4663 | 0.8323 | 0.6494 | 0.3975 | 0.4143 |
0.4588 | 17.0 | 5882 | 0.4515 | 0.8368 | 0.6142 | 0.4328 | 0.4568 |
Base model
vinai/phobert-base