metadata
library_name: transformers
license: mit
base_model: vinai/phobert-base
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: phobert-human-tl-seed-42
results: []
phobert-human-tl-seed-42
This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4535
- Accuracy: 0.8391
- Precision: 0.6540
- Recall: 0.4704
- F1: 0.4947
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 346 | 0.5155 | 0.8230 | 0.5189 | 0.3466 | 0.3267 |
0.5915 | 2.0 | 692 | 0.4712 | 0.8305 | 0.6068 | 0.4030 | 0.4152 |
0.4672 | 3.0 | 1038 | 0.4644 | 0.8327 | 0.6736 | 0.4060 | 0.4224 |
0.4672 | 4.0 | 1384 | 0.4667 | 0.8361 | 0.6805 | 0.4135 | 0.4321 |
0.4614 | 5.0 | 1730 | 0.4633 | 0.8361 | 0.6715 | 0.4145 | 0.4368 |
0.4576 | 6.0 | 2076 | 0.4599 | 0.8357 | 0.6605 | 0.4245 | 0.4437 |
0.4576 | 7.0 | 2422 | 0.4622 | 0.8365 | 0.6768 | 0.4147 | 0.4375 |
0.4553 | 8.0 | 2768 | 0.4527 | 0.8383 | 0.6430 | 0.4410 | 0.4643 |
0.4542 | 9.0 | 3114 | 0.4601 | 0.8335 | 0.6428 | 0.4059 | 0.4254 |
0.4542 | 10.0 | 3460 | 0.4600 | 0.8342 | 0.6642 | 0.4372 | 0.4537 |
0.4588 | 11.0 | 3806 | 0.4585 | 0.8353 | 0.6504 | 0.4105 | 0.4342 |
0.4487 | 12.0 | 4152 | 0.4535 | 0.8391 | 0.6540 | 0.4704 | 0.4947 |
0.4487 | 13.0 | 4498 | 0.4552 | 0.8361 | 0.6410 | 0.4205 | 0.4471 |
0.4577 | 14.0 | 4844 | 0.4558 | 0.8353 | 0.6467 | 0.4113 | 0.4336 |
0.4487 | 15.0 | 5190 | 0.4589 | 0.8335 | 0.6571 | 0.4019 | 0.4216 |
0.4586 | 16.0 | 5536 | 0.4665 | 0.8327 | 0.6580 | 0.3987 | 0.4161 |
0.4586 | 17.0 | 5882 | 0.4513 | 0.8379 | 0.6188 | 0.4343 | 0.4590 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0