trhgquan's picture
End of training
8b24003 verified
metadata
library_name: transformers
license: mit
base_model: vinai/phobert-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: phobert-human-tl-seed-24
    results: []

phobert-human-tl-seed-24

This model is a fine-tuned version of vinai/phobert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4536
  • Accuracy: 0.8391
  • Precision: 0.6540
  • Recall: 0.4704
  • F1: 0.4947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 346 0.5144 0.8237 0.5296 0.3491 0.3313
0.5988 2.0 692 0.4708 0.8305 0.6087 0.4030 0.4154
0.4669 3.0 1038 0.4640 0.8316 0.6565 0.4041 0.4188
0.4669 4.0 1384 0.4664 0.8376 0.7006 0.4177 0.4389
0.4619 5.0 1730 0.4635 0.8365 0.6788 0.4147 0.4368
0.4576 6.0 2076 0.4599 0.8365 0.6599 0.4270 0.4462
0.4576 7.0 2422 0.4623 0.8357 0.6823 0.4133 0.4355
0.4552 8.0 2768 0.4529 0.8398 0.6587 0.4438 0.4684
0.4543 9.0 3114 0.4595 0.8342 0.6396 0.4083 0.4288
0.4543 10.0 3460 0.4604 0.8346 0.6654 0.4374 0.4541
0.4586 11.0 3806 0.4589 0.8353 0.6563 0.4105 0.4341
0.449 12.0 4152 0.4536 0.8391 0.6540 0.4704 0.4947
0.449 13.0 4498 0.4552 0.8353 0.6381 0.4202 0.4463
0.4579 14.0 4844 0.4561 0.8353 0.6440 0.4113 0.4333
0.4489 15.0 5190 0.4596 0.8338 0.6609 0.4020 0.4219
0.459 16.0 5536 0.4667 0.8323 0.6563 0.3975 0.4143
0.459 17.0 5882 0.4513 0.8379 0.6220 0.4343 0.4589

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0