See axolotl config
axolotl version: 0.10.0.dev0
base_model: unsloth/Llama-3.3-70B-Instruct
model_type: AutoModelForCausalLM
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: tokenizer_default
datasets:
# Continued pretrain: novels, short stories
- path: datasets/Sugarquill10k_Clean.jsonl
type: completion
- path: datasets/Mixed-Novels-Completions.jsonl
type: completion
- path: datasets/Mixed-Novels-Completions-2.jsonl
type: completion
- path: datasets/recursal-scp-8k-filtered-4k.jsonl
type: completion
- path: datasets/orion-16k-cmpl-filtered.jsonl
type: completion
# adventure stuff, mostly for prose. ty toasty for uploading and making them public
- path: datasets/springdragon.json
type: completion
- path: datasets/cys-split.json
type: completion
# overfitting on disco elysium
- path: datasets/disco.jsonl
type: completion
- path: datasets/disco-chat.json
type: completion
shuffle_merged_datasets: true
dataset_prepared_path: last_run_prepared
val_set_size: 0.02
output_dir: ./stage1
sequence_len: 10240 # could try 10240 too?
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_ademamix_8bit
lr_scheduler: rex
learning_rate: 2e-5
weight_decay: 0.1
max_grad_norm: 1.5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: offload
gradient_checkpointing_kwargs:
use_reentrant: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 30
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
save_total_limit: 1
plugins:
- axolotl.integrations.liger.LigerPlugin
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
# liger_fused_linear_cross_entropy: true
cut_cross_entropy: true
deepspeed: deepspeed_configs/zero3_bf16_cpuoffload_params.json # multigpu only, maybe zero3_bf16_cpuoffload_params if OOM
wandb_project: Aster-v0
wandb_entity:
wandb_name:
stage1
This model is a fine-tuned version of unsloth/Llama-3.3-70B-Instruct on the datasets/Sugarquill10k_Clean.jsonl, the datasets/Mixed-Novels-Completions.jsonl, the datasets/Mixed-Novels-Completions-2.jsonl, the datasets/recursal-scp-8k-filtered-4k.jsonl, the datasets/orion-16k-cmpl-filtered.jsonl, the datasets/springdragon.json, the datasets/cys-split.json, the datasets/disco.jsonl and the datasets/disco-chat.json datasets. It achieves the following results on the evaluation set:
- Loss: 2.8411
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use paged_ademamix_8bit and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 30
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.3035 | 0.0076 | 1 | 4.4450 |
2.1115 | 0.2519 | 33 | 3.1527 |
2.0792 | 0.5038 | 66 | 3.0352 |
2.0392 | 0.7557 | 99 | 2.9758 |
1.8786 | 1.0076 | 132 | 2.9249 |
1.7199 | 1.2595 | 165 | 2.8835 |
1.5685 | 1.5115 | 198 | 2.8671 |
1.4424 | 1.7634 | 231 | 2.8411 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.5.1+cu124
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for trashpanda-org/Llama-3.3-70B-Aster-v0-stage1
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct
Finetuned
unsloth/Llama-3.3-70B-Instruct