output / README.md
tororoin's picture
tororoin/deberta-piid-1000subset
f8ead74 verified
|
raw
history blame
2.23 kB
metadata
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
model-index:
  - name: output
    results: []

output

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0022
  • Name Student Precision: 0.9737
  • Name Student Recall: 1.0
  • Name Student F1: 0.9867
  • Name Student Number: 37
  • Overall Precision: 0.9737
  • Overall Recall: 1.0
  • Overall F1: 0.9867
  • Overall Accuracy: 0.9975

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Name Student Precision Name Student Recall Name Student F1 Name Student Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.0002 1.0 400 0.0061 0.9737 1.0 0.9867 37 0.9737 1.0 0.9867 0.9975
0.0001 2.0 800 0.0022 0.9737 1.0 0.9867 37 0.9737 1.0 0.9867 0.9975

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2