Hicoder-R1-Distill-Gemma-27B
Notably, this CoT-enabled model was trained using only a single RTX 4090D, achieved through optimizations in both GPU VRAM and system RAM management, as well as specific techniques applied during the training steps.
Model Overview
Hicoder-R1-Distill-Gemma-27B is a large language model fine-tuned from Google's Gemma-3 27B base model. This model is specifically optimized for Chain-of-Thought (CoT) reasoning and code generation tasks.
- Base Model: google/gemma-3-27b
- Fine-tuned by: tonyli8623
- Focus Areas: Chain-of-Thought (CoT), Code Generation, Code Explanation, Debugging
- Language: Primarily English for prompts and reasoning, generates code in multiple languages.
Key Features
- Enhanced CoT Reasoning: Explicitly trained to break down complex problems into intermediate steps before providing a final answer, particularly useful for complex coding or algorithmic tasks.
- Strong Coding Capabilities: Generates, explains, debugs, and translates code across various programming languages (e.g., Python, JavaScript, Java, C++, SQL, etc.).
- Gemma-3 Foundation: Built upon the powerful and efficient architecture of Google's Gemma-3 27B model.
- Distillation Enhanced (Implied): Potentially benefits from knowledge distillation for improved performance relative to standard fine-tuning on the target tasks.
How to Use
You can use this model with the Hugging Face transformers
library.
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Specify the path to your fine-tuned model (local or Hugging Face Hub ID)
model_id = "tonyli8623/Hicoder-R1-Distill-Gemma-27B"
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency if supported
device_map="auto" # Automatically distribute across available GPUs
)
# --- Example 1: Simple Code Generation ---
prompt_simple = "Write a Python function to calculate the factorial of a number."
# Note: Use the appropriate chat template if the base model requires it (e.g., Gemma-2 instruct)
# Example using Gemma-2 instruct template structure (adjust if needed):
messages_simple = [
{"role": "user", "content": prompt_simple}
]
input_ids_simple = tokenizer.apply_chat_template(messages_simple, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs_simple = model.generate(
input_ids_simple,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
response_simple = tokenizer.decode(outputs_simple[0][input_ids_simple.shape[1]:], skip_special_tokens=True)
print("--- Simple Code Generation ---")
print(response_simple)
# --- Example 2: Code Generation with CoT ---
prompt_cot = """Think step-by-step to write a Python function that finds all prime numbers up to a given integer 'n' using the Sieve of Eratosthenes algorithm. Then, provide the function.
Let's break this down:
1. Understand the Sieve of Eratosthenes.
2. Outline the steps needed in the function.
3. Write the Python code based on the outline."""
messages_cot = [
{"role": "user", "content": prompt_cot}
]
input_ids_cot = tokenizer.apply_chat_template(messages_cot, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs_cot = model.generate(
input_ids_cot,
max_new_tokens=500, # Allow more tokens for CoT + code
do_sample=True,
temperature=0.6,
top_k=50,
top_p=0.95
)
response_cot = tokenizer.decode(outputs_cot[0][input_ids_cot.shape[1]:], skip_special_tokens=True)
print("\n--- Code Generation with CoT ---")
print(response_cot)
Prompting: For best results, especially when seeking CoT reasoning, explicitly ask the model to "think step-by-step" or "provide your reasoning process before the code". in system prompts add "You are a code engineer proficient in various programming languages. Before answering, please carefully consider the question and create a logically coherent thought process, starting with and ending with . After thinking, provide the answer."
Limitations and Bias
- This model is based on Gemma-3, and inherits its capabilities and limitations.
- While fine-tuned for coding, it may still generate incorrect, inefficient, or insecure code. Always review and test generated code thoroughly.
- The model's knowledge is limited to its training data cutoff.
- Like all LLMs, it may exhibit biases present in the underlying training data.
- Chain-of-Thought reasoning may not always be perfect or logical.
License
The license for this model depends on the base Gemma-2 model's license and any additional terms you impose. The Gemma-3 models are typically governed by the "Gemma Terms of Use". Please consult the specific license file included with the model or the Gemma Terms of Use.
- Gemma Terms of Use: [Link to Google's Gemma Terms, e.g., https://ai.google.dev/gemma/terms]
- Fine-tuning Specific License (if any): [Specify if you add Apache 2.0, MIT, etc., or state it follows the base model license]
Citation
If you use this model in your research or work, please consider citing:
@misc{hicoder_r1_distill_gemma_27b_[year],
title={Hicoder-R1-Distill-Gemma-27B: A Chain-of-Thought and Code Generation Focused Model},
author={[Your Name/Organization]},
year={[Year of Release]},
howpublished={\url{[Link to Model Hub or Repository]}}
}
@misc{gemma2_2024,
title={Gemma 3 Technical Report},
author={Gemma Team, Google},
year={2024},
howpublished={\url{https://ai.google.dev/gemma}} % Replace with actual Gemma 2 paper/report link if available
}
Contact
For questions, feedback, or issues, please contact [email protected].
中文版 (Chinese Version)
模型概述
Hicoder-R1-Distill-Gemma-27B 是一个基于 Google Gemma-3 27B (基础模型进行微调的大型语言模型。该模型专门针对思维链 (Chain-of-Thought, CoT) 推理和代码生成任务进行了优化。
- 基础模型: google/gemma-2-27b (或指定使用的确切变体,例如 gemma-2-27b-it)
- 微调者: [您的姓名/组织名称]
- 专注领域: 思维链 (CoT), 代码生成, 代码解释, 代码调试
- 语言: 主要使用英文进行提示和推理,可生成多种编程语言的代码。
主要特性
- 增强的 CoT 推理能力: 经过专门训练,能够在提供最终答案之前将复杂问题分解为中间步骤,这对于复杂的编码或算法任务特别有用。
- 强大的编码能力: 能生成、解释、调试和翻译多种编程语言(如 Python, JavaScript, Java, C++, SQL 等)的代码。
- 基于 Gemma-2: 构建于 Google 强大且高效的 Gemma-2 27B 模型架构之上。
- 蒸馏增强 (推测): 可能受益于知识蒸馏,相对于在目标任务上的标准微调,性能有所提升。
如何使用
您可以通过 Hugging Face transformers
库来使用此模型。
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# 指定您的微调模型的路径 (本地路径或 Hugging Face Hub ID)
model_id = "tonyli8623/Hicoder-R1-Distill-Gemma-27B"
# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16, # 如果硬件支持,使用 bfloat16 以提高效率
device_map="auto" # 自动将模型分配到可用的 GPU 上
)
# --- 示例 1: 简单代码生成 ---
prompt_simple = "编写一个 Python 函数来计算一个数的阶乘。"
# 注意: 如果基础模型需要,请使用相应的聊天模板 (例如 Gemma-2 instruct)
# 使用 Gemma-2 instruct 模板结构的示例 (如果需要请调整):
messages_simple = [
{"role": "user", "content": prompt_simple}
]
input_ids_simple = tokenizer.apply_chat_template(messages_simple, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs_simple = model.generate(
input_ids_simple,
max_new_tokens=150,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.95
)
response_simple = tokenizer.decode(outputs_simple[0][input_ids_simple.shape[1]:], skip_special_tokens=True)
print("--- 简单代码生成 ---")
print(response_simple)
# --- 示例 2: 带 CoT 的代码生成 ---
prompt_cot = """请逐步思考如何编写一个 Python 函数,使用埃拉托斯特尼筛法 (Sieve of Eratosthenes) 找出小于等于给定整数 'n' 的所有素数。然后,提供该函数。
让我们分解一下步骤:
1. 理解埃拉托斯特尼筛法的原理。
2. 概述函数中需要的步骤。
3. 基于概述编写 Python 代码。"""
messages_cot = [
{"role": "user", "content": prompt_cot}
]
input_ids_cot = tokenizer.apply_chat_template(messages_cot, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
outputs_cot = model.generate(
input_ids_cot,
max_new_tokens=500, # 为 CoT + 代码允许更多 token
do_sample=True,
temperature=0.6,
top_k=50,
top_p=0.95
)
response_cot = tokenizer.decode(outputs_cot[0][input_ids_cot.shape[1]:], skip_special_tokens=True)
print("\n--- 带 CoT 的代码生成 ---")
print(response_cot)
提示词技巧 (Prompting): 为了获得最佳效果,尤其是在需要 CoT 推理时,请明确要求模型“逐步思考”或“在代码前提供你的推理过程”。如添加system prompts "你是一位精通各种编程语言的代码工程师。在回答之前,请仔细思考问题,并创建一个逻辑连贯的思考过程,以开始,以结束,思考完后给出答案。"
局限性与偏见
- 该模型基于 Gemma-2,继承了其能力和局限性。
- 尽管针对编码进行了微调,它仍可能生成不正确、低效或不安全的代码。请务必仔细审查和测试生成的代码。
- 模型的知识仅限于其训练数据的截止日期。
- 与所有大型语言模型一样,它可能表现出基础训练数据中存在的偏见。
- 思维链推理可能并非总是完美或符合逻辑。
许可证 (License)
该模型的许可证取决于基础 Gemma-2 模型的许可证以及您可能施加的任何附加条款。Gemma-2 模型通常受 "Gemma 使用条款" 的约束。请查阅模型附带的具体许可证文件或 Gemma 使用条款。
- Gemma 使用条款: [指向 Google Gemma 条款的链接, 例如: https://ai.google.dev/gemma/terms]
- 微调特定许可证 (如有): [在此说明您是否添加了 Apache 2.0, MIT 等许可证,或声明其遵循基础模型的许可证]
引用
如果您在研究或工作中使用此模型,请考虑引用:
@misc{hicoder_r1_distill_gemma_27b_[年份],
title={Hicoder-R1-Distill-Gemma-27B: 一个专注于思维链和代码生成的模型},
author={[您的姓名/组织名称]},
year={[发布年份]},
howpublished={\url{[模型 Hub 或仓库的链接]}}
}
@misc{gemma2_2024,
title={Gemma 2 Technical Report},
author={Gemma Team, Google},
year={2024},
}
- Downloads last month
- 4