Llama0-3-8b-ultra-p-0.05
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5203
- Rewards/chosen: -0.9516
- Rewards/rejected: -1.8713
- Rewards/accuracies: 0.7344
- Rewards/margins: 0.9197
- Logps/rejected: -451.7943
- Logps/chosen: -351.7126
- Logits/rejected: 0.7305
- Logits/chosen: 0.5934
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6104 | 0.2060 | 100 | 0.6071 | -0.3701 | -0.6034 | 0.6719 | 0.2333 | -325.0017 | -293.5632 | 0.3051 | 0.2437 |
0.5839 | 0.4119 | 200 | 0.5788 | -0.4556 | -0.8422 | 0.6875 | 0.3867 | -348.8867 | -302.1120 | 0.3006 | 0.2201 |
0.561 | 0.6179 | 300 | 0.5644 | -0.5556 | -1.0628 | 0.6953 | 0.5072 | -370.9420 | -312.1160 | 0.4520 | 0.3342 |
0.5489 | 0.8239 | 400 | 0.5474 | -0.6136 | -1.2310 | 0.7188 | 0.6174 | -387.7600 | -317.9102 | 0.5350 | 0.4135 |
0.5112 | 1.0299 | 500 | 0.5325 | -0.8101 | -1.5835 | 0.7344 | 0.7734 | -423.0114 | -337.5664 | 0.6096 | 0.4735 |
0.4577 | 1.2358 | 600 | 0.5291 | -1.0553 | -1.9636 | 0.7109 | 0.9083 | -461.0272 | -362.0868 | 0.7787 | 0.6411 |
0.4688 | 1.4418 | 700 | 0.5220 | -0.9496 | -1.8535 | 0.7266 | 0.9040 | -450.0144 | -351.5097 | 0.7421 | 0.6045 |
0.4684 | 1.6478 | 800 | 0.5194 | -0.9894 | -1.9115 | 0.7344 | 0.9221 | -455.8119 | -355.4933 | 0.7759 | 0.6367 |
0.4731 | 1.8538 | 900 | 0.5202 | -0.9713 | -1.9015 | 0.7344 | 0.9303 | -454.8165 | -353.6810 | 0.7319 | 0.5955 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.20.0
- Downloads last month
- 19
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support