robertalarge2gpt2medium-roberta-large-gpt2-medium-cnn-dailymail-seed42
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.8587
- Rouge1: 0.1313
- Rouge2: 0.0100
- Rougel: 0.0930
- Rougelsum: 0.1248
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
3.1361 | 0.2229 | 2000 | 3.6693 | 0.1303 | 0.0086 | 0.0899 | 0.1229 |
3.0882 | 0.4458 | 4000 | 3.0563 | 0.1266 | 0.0093 | 0.0852 | 0.1197 |
3.0616 | 0.6687 | 6000 | 3.0054 | 0.1276 | 0.0060 | 0.0904 | 0.1194 |
3.0354 | 0.8916 | 8000 | 2.9219 | 0.1327 | 0.0068 | 0.0905 | 0.1249 |
2.8745 | 1.1145 | 10000 | 2.9023 | 0.1285 | 0.0064 | 0.0881 | 0.1198 |
2.8831 | 1.3374 | 12000 | 2.8869 | 0.1416 | 0.0106 | 0.0947 | 0.1347 |
2.8808 | 1.5603 | 14000 | 2.8811 | 0.1257 | 0.0078 | 0.0884 | 0.1192 |
2.8784 | 1.7832 | 16000 | 2.8707 | 0.1196 | 0.0076 | 0.0847 | 0.1136 |
2.8649 | 2.0061 | 18000 | 2.8699 | 0.1307 | 0.0080 | 0.0892 | 0.1241 |
2.7779 | 2.2290 | 20000 | 2.8708 | 0.1253 | 0.0078 | 0.0879 | 0.1191 |
2.7684 | 2.4519 | 22000 | 2.8671 | 0.1296 | 0.0085 | 0.0914 | 0.1230 |
2.7639 | 2.6748 | 24000 | 2.8614 | 0.1282 | 0.0098 | 0.0911 | 0.1216 |
2.767 | 2.8977 | 26000 | 2.8587 | 0.1313 | 0.0100 | 0.0930 | 0.1248 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support