File size: 3,032 Bytes
242762b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
- generated_from_trainer
model-index:
- name: modernbert-dllm-tulu
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# modernbert-dllm-tulu

This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6432

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log        | 0.0332 | 200  | 1.7948          |
| No log        | 0.0664 | 400  | 1.7504          |
| 1.7964        | 0.0997 | 600  | 1.7230          |
| 1.7964        | 0.1329 | 800  | 1.7046          |
| 1.717         | 0.1661 | 1000 | 1.6923          |
| 1.717         | 0.1993 | 1200 | 1.6827          |
| 1.717         | 0.2326 | 1400 | 1.6752          |
| 1.6662        | 0.2658 | 1600 | 1.6689          |
| 1.6662        | 0.2990 | 1800 | 1.6638          |
| 1.6667        | 0.3322 | 2000 | 1.6601          |
| 1.6667        | 0.3654 | 2200 | 1.6574          |
| 1.6667        | 0.3987 | 2400 | 1.6544          |
| 1.6626        | 0.4319 | 2600 | 1.6525          |
| 1.6626        | 0.4651 | 2800 | 1.6505          |
| 1.6472        | 0.4983 | 3000 | 1.6493          |
| 1.6472        | 0.5316 | 3200 | 1.6479          |
| 1.6472        | 0.5648 | 3400 | 1.6469          |
| 1.6354        | 0.5980 | 3600 | 1.6460          |
| 1.6354        | 0.6312 | 3800 | 1.6454          |
| 1.6457        | 0.6645 | 4000 | 1.6448          |
| 1.6457        | 0.6977 | 4200 | 1.6445          |
| 1.6457        | 0.7309 | 4400 | 1.6440          |
| 1.6404        | 0.7641 | 4600 | 1.6437          |
| 1.6404        | 0.7973 | 4800 | 1.6436          |
| 1.6472        | 0.8306 | 5000 | 1.6435          |
| 1.6472        | 0.8638 | 5200 | 1.6434          |
| 1.6472        | 0.8970 | 5400 | 1.6433          |
| 1.6394        | 0.9302 | 5600 | 1.6433          |
| 1.6394        | 0.9635 | 5800 | 1.6432          |
| 1.6313        | 0.9967 | 6000 | 1.6432          |


### Framework versions

- Transformers 4.53.0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2