File size: 3,032 Bytes
242762b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
library_name: transformers
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
- generated_from_trainer
model-index:
- name: modernbert-dllm-tulu
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# modernbert-dllm-tulu
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6432
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0332 | 200 | 1.7948 |
| No log | 0.0664 | 400 | 1.7504 |
| 1.7964 | 0.0997 | 600 | 1.7230 |
| 1.7964 | 0.1329 | 800 | 1.7046 |
| 1.717 | 0.1661 | 1000 | 1.6923 |
| 1.717 | 0.1993 | 1200 | 1.6827 |
| 1.717 | 0.2326 | 1400 | 1.6752 |
| 1.6662 | 0.2658 | 1600 | 1.6689 |
| 1.6662 | 0.2990 | 1800 | 1.6638 |
| 1.6667 | 0.3322 | 2000 | 1.6601 |
| 1.6667 | 0.3654 | 2200 | 1.6574 |
| 1.6667 | 0.3987 | 2400 | 1.6544 |
| 1.6626 | 0.4319 | 2600 | 1.6525 |
| 1.6626 | 0.4651 | 2800 | 1.6505 |
| 1.6472 | 0.4983 | 3000 | 1.6493 |
| 1.6472 | 0.5316 | 3200 | 1.6479 |
| 1.6472 | 0.5648 | 3400 | 1.6469 |
| 1.6354 | 0.5980 | 3600 | 1.6460 |
| 1.6354 | 0.6312 | 3800 | 1.6454 |
| 1.6457 | 0.6645 | 4000 | 1.6448 |
| 1.6457 | 0.6977 | 4200 | 1.6445 |
| 1.6457 | 0.7309 | 4400 | 1.6440 |
| 1.6404 | 0.7641 | 4600 | 1.6437 |
| 1.6404 | 0.7973 | 4800 | 1.6436 |
| 1.6472 | 0.8306 | 5000 | 1.6435 |
| 1.6472 | 0.8638 | 5200 | 1.6434 |
| 1.6472 | 0.8970 | 5400 | 1.6433 |
| 1.6394 | 0.9302 | 5600 | 1.6433 |
| 1.6394 | 0.9635 | 5800 | 1.6432 |
| 1.6313 | 0.9967 | 6000 | 1.6432 |
### Framework versions
- Transformers 4.53.0
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
|