End of training
Browse files
README.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: answerdotai/ModernBERT-large
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: modernbert-dllm-tulu
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# modernbert-dllm-tulu
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.6432
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 5e-05
|
39 |
+
- train_batch_size: 32
|
40 |
+
- eval_batch_size: 32
|
41 |
+
- seed: 42
|
42 |
+
- distributed_type: multi-GPU
|
43 |
+
- num_devices: 4
|
44 |
+
- total_train_batch_size: 128
|
45 |
+
- total_eval_batch_size: 128
|
46 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 1
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
53 |
+
|:-------------:|:------:|:----:|:---------------:|
|
54 |
+
| No log | 0.0332 | 200 | 1.7948 |
|
55 |
+
| No log | 0.0664 | 400 | 1.7504 |
|
56 |
+
| 1.7964 | 0.0997 | 600 | 1.7230 |
|
57 |
+
| 1.7964 | 0.1329 | 800 | 1.7046 |
|
58 |
+
| 1.717 | 0.1661 | 1000 | 1.6923 |
|
59 |
+
| 1.717 | 0.1993 | 1200 | 1.6827 |
|
60 |
+
| 1.717 | 0.2326 | 1400 | 1.6752 |
|
61 |
+
| 1.6662 | 0.2658 | 1600 | 1.6689 |
|
62 |
+
| 1.6662 | 0.2990 | 1800 | 1.6638 |
|
63 |
+
| 1.6667 | 0.3322 | 2000 | 1.6601 |
|
64 |
+
| 1.6667 | 0.3654 | 2200 | 1.6574 |
|
65 |
+
| 1.6667 | 0.3987 | 2400 | 1.6544 |
|
66 |
+
| 1.6626 | 0.4319 | 2600 | 1.6525 |
|
67 |
+
| 1.6626 | 0.4651 | 2800 | 1.6505 |
|
68 |
+
| 1.6472 | 0.4983 | 3000 | 1.6493 |
|
69 |
+
| 1.6472 | 0.5316 | 3200 | 1.6479 |
|
70 |
+
| 1.6472 | 0.5648 | 3400 | 1.6469 |
|
71 |
+
| 1.6354 | 0.5980 | 3600 | 1.6460 |
|
72 |
+
| 1.6354 | 0.6312 | 3800 | 1.6454 |
|
73 |
+
| 1.6457 | 0.6645 | 4000 | 1.6448 |
|
74 |
+
| 1.6457 | 0.6977 | 4200 | 1.6445 |
|
75 |
+
| 1.6457 | 0.7309 | 4400 | 1.6440 |
|
76 |
+
| 1.6404 | 0.7641 | 4600 | 1.6437 |
|
77 |
+
| 1.6404 | 0.7973 | 4800 | 1.6436 |
|
78 |
+
| 1.6472 | 0.8306 | 5000 | 1.6435 |
|
79 |
+
| 1.6472 | 0.8638 | 5200 | 1.6434 |
|
80 |
+
| 1.6472 | 0.8970 | 5400 | 1.6433 |
|
81 |
+
| 1.6394 | 0.9302 | 5600 | 1.6433 |
|
82 |
+
| 1.6394 | 0.9635 | 5800 | 1.6432 |
|
83 |
+
| 1.6313 | 0.9967 | 6000 | 1.6432 |
|
84 |
+
|
85 |
+
|
86 |
+
### Framework versions
|
87 |
+
|
88 |
+
- Transformers 4.53.0
|
89 |
+
- Pytorch 2.7.1+cu126
|
90 |
+
- Datasets 3.6.0
|
91 |
+
- Tokenizers 0.21.2
|