Distilbert base trained on Natural-Questions tuples

This is a Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

Model Sources

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-nq")
# Run inference
sentences = [
    'is send in the clowns from a musical',
    'Send In the Clowns "Send In the Clowns" is a song written by Stephen Sondheim for the 1973 musical A Little Night Music, an adaptation of Ingmar Bergman\'s film Smiles of a Summer Night. It is a ballad from Act Two, in which the character Desirée reflects on the ironies and disappointments of her life. Among other things, she looks back on an affair years earlier with the lawyer Fredrik, who was deeply in love with her but whose marriage proposals she had rejected. Meeting him after so long, she realizes she is in love with him and finally ready to marry him, but now it is he who rejects her: he is in an unconsummated marriage with a much younger woman. Desirée proposes marriage to rescue him from this situation, but he declines, citing his dedication to his bride. Reacting to his rejection, Desirée sings this song. The song is later reprised as a coda after Fredrik\'s young wife runs away with his son, and Fredrik is finally free to accept Desirée\'s offer.[1]',
    'The Suite Life on Deck The Suite Life on Deck is an American sitcom that aired on Disney Channel from September 26, 2008 to May 6, 2011. It is a sequel/spin-off of the Disney Channel Original Series The Suite Life of Zack & Cody. The series follows twin brothers Zack and Cody Martin and hotel heiress London Tipton in a new setting, the SS Tipton, where they attend classes at "Seven Seas High School" and meet Bailey Pickett while Mr. Moseby manages the ship. The ship travels around the world to nations such as Italy, France, Greece, India, Sweden and the United Kingdom where the characters experience different cultures, adventures, and situations.[1]',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.32 0.32 0.48
dot_accuracy@3 0.48 0.42 0.68
dot_accuracy@5 0.56 0.48 0.72
dot_accuracy@10 0.72 0.58 0.76
dot_precision@1 0.32 0.32 0.48
dot_precision@3 0.16 0.2867 0.2267
dot_precision@5 0.112 0.284 0.144
dot_precision@10 0.072 0.236 0.08
dot_recall@1 0.32 0.0191 0.46
dot_recall@3 0.48 0.0491 0.64
dot_recall@5 0.56 0.0667 0.67
dot_recall@10 0.72 0.0893 0.73
dot_ndcg@10 0.498 0.27 0.6094
dot_mrr@10 0.4297 0.3939 0.5884
dot_map@100 0.441 0.1121 0.5709

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3733
dot_accuracy@3 0.5267
dot_accuracy@5 0.5867
dot_accuracy@10 0.6867
dot_precision@1 0.3733
dot_precision@3 0.2244
dot_precision@5 0.18
dot_precision@10 0.1293
dot_recall@1 0.2664
dot_recall@3 0.3897
dot_recall@5 0.4322
dot_recall@10 0.5131
dot_ndcg@10 0.4591
dot_mrr@10 0.4707
dot_map@100 0.3747

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 29 characters
    • mean: 46.96 characters
    • max: 93 characters
    • min: 10 characters
    • mean: 582.13 characters
    • max: 2141 characters
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
    ), 'query_regularizer': FlopsLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
    )}
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 30 characters
    • mean: 47.2 characters
    • max: 96 characters
    • min: 58 characters
    • mean: 598.96 characters
    • max: 2480 characters
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: SpladeLoss with these parameters:
    {'loss': SparseMultipleNegativesRankingLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
      (cross_entropy_loss): CrossEntropyLoss()
    ), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
    ), 'query_regularizer': FlopsLoss(
      (model): SparseEncoder(
        (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
        (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
      )
    )}
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
0.0162 100 153.0226 - - - - -
0.0323 200 13.1878 - - - - -
0.0485 300 2.103 - - - - -
0.0646 400 0.3687 - - - - -
0.0808 500 0.2077 - - - - -
0.0970 600 0.0595 - - - - -
0.1131 700 0.0715 - - - - -
0.1293 800 0.112 - - - - -
0.1454 900 0.0362 - - - - -
0.1616 1000 0.0442 0.0489 0.4540 0.2450 0.4984 0.3991
0.1778 1100 0.0321 - - - - -
0.1939 1200 0.0307 - - - - -
0.2101 1300 0.0443 - - - - -
0.2262 1400 0.0381 - - - - -
0.2424 1500 0.0302 - - - - -
0.2586 1600 0.0267 - - - - -
0.2747 1700 0.0541 - - - - -
0.2909 1800 0.0472 - - - - -
0.3070 1900 0.027 - - - - -
0.3232 2000 0.0615 0.0393 0.4904 0.2834 0.5711 0.4483
0.3394 2100 0.0183 - - - - -
0.3555 2200 0.0312 - - - - -
0.3717 2300 0.0196 - - - - -
0.3878 2400 0.0451 - - - - -
0.4040 2500 0.036 - - - - -
0.4202 2600 0.0487 - - - - -
0.4363 2700 0.0195 - - - - -
0.4525 2800 0.0452 - - - - -
0.4686 2900 0.0227 - - - - -
0.4848 3000 0.0154 0.0369 0.4398 0.2864 0.6094 0.4452
0.5010 3100 0.0183 - - - - -
0.5171 3200 0.0072 - - - - -
0.5333 3300 0.0262 - - - - -
0.5495 3400 0.0202 - - - - -
0.5656 3500 0.0392 - - - - -
0.5818 3600 0.015 - - - - -
0.5979 3700 0.0146 - - - - -
0.6141 3800 0.0172 - - - - -
0.6303 3900 0.0361 - - - - -
0.6464 4000 0.0163 0.0293 0.4673 0.2867 0.6111 0.4551
0.6626 4100 0.019 - - - - -
0.6787 4200 0.0196 - - - - -
0.6949 4300 0.0286 - - - - -
0.7111 4400 0.0391 - - - - -
0.7272 4500 0.0253 - - - - -
0.7434 4600 0.0155 - - - - -
0.7595 4700 0.0367 - - - - -
0.7757 4800 0.0213 - - - - -
0.7919 4900 0.0155 - - - - -
0.8080 5000 0.0242 0.0279 0.4984 0.2568 0.5949 0.4500
0.8242 5100 0.011 - - - - -
0.8403 5200 0.0145 - - - - -
0.8565 5300 0.0086 - - - - -
0.8727 5400 0.0254 - - - - -
0.8888 5500 0.0137 - - - - -
0.9050 5600 0.0117 - - - - -
0.9211 5700 0.0171 - - - - -
0.9373 5800 0.0192 - - - - -
0.9535 5900 0.0203 - - - - -
0.9696 6000 0.0239 0.0245 0.4987 0.2674 0.6058 0.4573
0.9858 6100 0.0233 - - - - -
-1 -1 - - 0.4980 0.2700 0.6094 0.4591

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.100 kWh
  • Carbon Emitted: 0.039 kg of CO2
  • Hours Used: 0.285 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.51.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
Downloads last month
13
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for tomaarsen/splade-distilbert-base-uncased-nq

Finetuned
(8585)
this model

Dataset used to train tomaarsen/splade-distilbert-base-uncased-nq

Evaluation results