metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: >-
The term emergent literacy signals a belief that, in a literate society,
young children even one and two year olds, are in the process of becoming
literate”. ... Gray (1956:21) notes: Functional literacy is used for the
training of adults to 'meet independently the reading and writing demands
placed on them'.
- text: >-
Rey is seemingly confirmed as being The Chosen One per a quote by a
Lucasfilm production designer who worked on The Rise of Skywalker.
- text: are union gun safes fireproof?
- text: >-
Fruit is an essential part of a healthy diet — and may aid weight loss.
Most fruits are low in calories while high in nutrients and fiber, which
can boost your fullness. Keep in mind that it's best to eat fruits whole
rather than juiced. What's more, simply eating fruit is not the key to
weight loss.
- text: >-
Treatment of suspected bacterial infection is with antibiotics, such as
amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute
sinusitis and for up to 6 weeks for chronic sinusitis.
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 13.144676625187973
energy_consumed: 0.03381684844736578
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.145
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: splade-distilbert-base-uncased trained on GooAQ
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.4
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.13333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.1
name: Dot Precision@5
- type: dot_precision@10
value: 0.07
name: Dot Precision@10
- type: dot_recall@1
value: 0.22
name: Dot Recall@1
- type: dot_recall@3
value: 0.4
name: Dot Recall@3
- type: dot_recall@5
value: 0.5
name: Dot Recall@5
- type: dot_recall@10
value: 0.7
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.43322728177988873
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.35121428571428576
name: Dot Mrr@10
- type: dot_map@100
value: 0.36254438939466105
name: Dot Map@100
- type: query_active_dims
value: 114.83999633789062
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9962374681758112
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 504.9510192871094
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9834561621359311
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.4
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.13333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.1
name: Dot Precision@5
- type: dot_precision@10
value: 0.07
name: Dot Precision@10
- type: dot_recall@1
value: 0.22
name: Dot Recall@1
- type: dot_recall@3
value: 0.4
name: Dot Recall@3
- type: dot_recall@5
value: 0.5
name: Dot Recall@5
- type: dot_recall@10
value: 0.7
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.43322728177988873
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.35121428571428576
name: Dot Mrr@10
- type: dot_map@100
value: 0.36254438939466105
name: Dot Map@100
- type: query_active_dims
value: 114.83999633789062
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9962374681758112
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 504.9510192871094
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9834561621359311
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.44
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.48
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.2533333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.20800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.172
name: Dot Precision@10
- type: dot_recall@1
value: 0.01025265789874976
name: Dot Recall@1
- type: dot_recall@3
value: 0.024326098686792398
name: Dot Recall@3
- type: dot_recall@5
value: 0.03315745551680213
name: Dot Recall@5
- type: dot_recall@10
value: 0.058486915473213524
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.19719700869611326
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.35035714285714287
name: Dot Mrr@10
- type: dot_map@100
value: 0.06408607089134896
name: Dot Map@100
- type: query_active_dims
value: 185
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9939387982438896
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 1286.7938232421875
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9578404487503379
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.42
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.44
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.48
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.2533333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.20800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.172
name: Dot Precision@10
- type: dot_recall@1
value: 0.01025265789874976
name: Dot Recall@1
- type: dot_recall@3
value: 0.024326098686792398
name: Dot Recall@3
- type: dot_recall@5
value: 0.03315745551680213
name: Dot Recall@5
- type: dot_recall@10
value: 0.058486915473213524
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.19719700869611326
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.35035714285714287
name: Dot Mrr@10
- type: dot_map@100
value: 0.06408607089134896
name: Dot Map@100
- type: query_active_dims
value: 185
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9939387982438896
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 1286.7938232421875
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9578404487503379
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.36
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.56
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.12
name: Dot Precision@3
- type: dot_precision@5
value: 0.10000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.05600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.2
name: Dot Recall@1
- type: dot_recall@3
value: 0.33
name: Dot Recall@3
- type: dot_recall@5
value: 0.46
name: Dot Recall@5
- type: dot_recall@10
value: 0.52
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3556861493087894
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.322
name: Dot Mrr@10
- type: dot_map@100
value: 0.31376550096906575
name: Dot Map@100
- type: query_active_dims
value: 98.22000122070312
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9967819932763022
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 841.8667602539062
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9724177065639898
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.36
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.56
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.12
name: Dot Precision@3
- type: dot_precision@5
value: 0.10000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.05600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.2
name: Dot Recall@1
- type: dot_recall@3
value: 0.33
name: Dot Recall@3
- type: dot_recall@5
value: 0.46
name: Dot Recall@5
- type: dot_recall@10
value: 0.52
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3556861493087894
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.322
name: Dot Mrr@10
- type: dot_map@100
value: 0.31376550096906575
name: Dot Map@100
- type: query_active_dims
value: 98.22000122070312
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9967819932763022
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 841.8667602539062
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9724177065639898
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.24
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.39333333333333337
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.48
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.58
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.24
name: Dot Precision@1
- type: dot_precision@3
value: 0.16888888888888887
name: Dot Precision@3
- type: dot_precision@5
value: 0.13600000000000004
name: Dot Precision@5
- type: dot_precision@10
value: 0.09933333333333333
name: Dot Precision@10
- type: dot_recall@1
value: 0.14341755263291658
name: Dot Recall@1
- type: dot_recall@3
value: 0.25144203289559747
name: Dot Recall@3
- type: dot_recall@5
value: 0.3310524851722674
name: Dot Recall@5
- type: dot_recall@10
value: 0.42616230515773784
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3287034799282638
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3411904761904762
name: Dot Mrr@10
- type: dot_map@100
value: 0.24679865375169194
name: Dot Map@100
- type: query_active_dims
value: 132.6866658528646
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9956527532320011
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 812.3067522198979
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9733861885780781
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.3254945054945055
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.4843328100470958
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5676295133437991
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.6615384615384615
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3254945054945055
name: Dot Precision@1
- type: dot_precision@3
value: 0.2203453689167975
name: Dot Precision@3
- type: dot_precision@5
value: 0.1832904238618524
name: Dot Precision@5
- type: dot_precision@10
value: 0.13404081632653062
name: Dot Precision@10
- type: dot_recall@1
value: 0.17156366311931473
name: Dot Recall@1
- type: dot_recall@3
value: 0.27243997398612047
name: Dot Recall@3
- type: dot_recall@5
value: 0.3368199222866662
name: Dot Recall@5
- type: dot_recall@10
value: 0.4238029847392705
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3726337418448364
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4264663726296379
name: Dot Mrr@10
- type: dot_map@100
value: 0.2989418038202097
name: Dot Map@100
- type: query_active_dims
value: 234.31433094300914
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9923231003557103
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 808.1458433081926
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9735225134883626
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.22
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.28
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.36
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.46
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.22
name: Dot Precision@1
- type: dot_precision@3
value: 0.11333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.084
name: Dot Precision@5
- type: dot_precision@10
value: 0.05800000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.09166666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.15333333333333332
name: Dot Recall@3
- type: dot_recall@5
value: 0.17666666666666664
name: Dot Recall@5
- type: dot_recall@10
value: 0.22466666666666665
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.19429559758090853
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.27672222222222226
name: Dot Mrr@10
- type: dot_map@100
value: 0.15485373044420248
name: Dot Map@100
- type: query_active_dims
value: 259.8599853515625
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9914861416240233
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 1094.6026611328125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9641372563681013
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.52
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.74
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.84
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.88
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.52
name: Dot Precision@1
- type: dot_precision@3
value: 0.4599999999999999
name: Dot Precision@3
- type: dot_precision@5
value: 0.45199999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.384
name: Dot Precision@10
- type: dot_recall@1
value: 0.04966217676438495
name: Dot Recall@1
- type: dot_recall@3
value: 0.10354828293616407
name: Dot Recall@3
- type: dot_recall@5
value: 0.16425525763608173
name: Dot Recall@5
- type: dot_recall@10
value: 0.2406829559845734
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.456594069464261
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6436666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.3020935356938311
name: Dot Map@100
- type: query_active_dims
value: 191.25999450683594
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9937337004617379
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 809.2098999023438
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9734876515332435
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.58
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.66
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.72
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.88
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.58
name: Dot Precision@1
- type: dot_precision@3
value: 0.22
name: Dot Precision@3
- type: dot_precision@5
value: 0.14800000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08999999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.56
name: Dot Recall@1
- type: dot_recall@3
value: 0.63
name: Dot Recall@3
- type: dot_recall@5
value: 0.7
name: Dot Recall@5
- type: dot_recall@10
value: 0.8466666666666666
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.681545812563628
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6464126984126983
name: Dot Mrr@10
- type: dot_map@100
value: 0.6296549550854825
name: Dot Map@100
- type: query_active_dims
value: 249.5399932861328
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9918242581322937
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 1358.960205078125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9554760433432237
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.14
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.26
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.36
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.46
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.14
name: Dot Precision@1
- type: dot_precision@3
value: 0.10666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.10400000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.068
name: Dot Precision@10
- type: dot_recall@1
value: 0.07933333333333334
name: Dot Recall@1
- type: dot_recall@3
value: 0.157
name: Dot Recall@3
- type: dot_recall@5
value: 0.2571666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.30074603174603176
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.21720208465433088
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.23057936507936508
name: Dot Mrr@10
- type: dot_map@100
value: 0.17181110132538066
name: Dot Map@100
- type: query_active_dims
value: 87.4000015258789
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9971364916609043
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 517.6328735351562
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9830406633400447
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.48
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.78
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.48
name: Dot Precision@1
- type: dot_precision@3
value: 0.26666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.204
name: Dot Precision@5
- type: dot_precision@10
value: 0.114
name: Dot Precision@10
- type: dot_recall@1
value: 0.24
name: Dot Recall@1
- type: dot_recall@3
value: 0.4
name: Dot Recall@3
- type: dot_recall@5
value: 0.51
name: Dot Recall@5
- type: dot_recall@10
value: 0.57
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.489382062974203
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5975555555555556
name: Dot Mrr@10
- type: dot_map@100
value: 0.41273857719946977
name: Dot Map@100
- type: query_active_dims
value: 151.22000122070312
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9950455408813085
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 904.4683837890625
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9703666737504403
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.34
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.74
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.34
name: Dot Precision@1
- type: dot_precision@3
value: 0.16
name: Dot Precision@3
- type: dot_precision@5
value: 0.12
name: Dot Precision@5
- type: dot_precision@10
value: 0.07800000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.32666666666666666
name: Dot Recall@1
- type: dot_recall@3
value: 0.4466666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.5406666666666666
name: Dot Recall@5
- type: dot_recall@10
value: 0.7106666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5024501622170336
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.45037301587301587
name: Dot Mrr@10
- type: dot_map@100
value: 0.444050525697599
name: Dot Map@100
- type: query_active_dims
value: 51.31999969482422
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9983185898796008
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 59.146453857421875
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.998062169783847
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.58
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.24
name: Dot Precision@3
- type: dot_precision@5
value: 0.17199999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.13599999999999998
name: Dot Precision@10
- type: dot_recall@1
value: 0.05866666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.14766666666666667
name: Dot Recall@3
- type: dot_recall@5
value: 0.17566666666666664
name: Dot Recall@5
- type: dot_recall@10
value: 0.2796666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.25565589285716384
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4341031746031745
name: Dot Mrr@10
- type: dot_map@100
value: 0.16804725663907635
name: Dot Map@100
- type: query_active_dims
value: 195.27999877929688
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9936019920457605
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 1035.02685546875
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9660891535460078
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.02
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.12
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.14
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.16
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.02
name: Dot Precision@1
- type: dot_precision@3
value: 0.039999999999999994
name: Dot Precision@3
- type: dot_precision@5
value: 0.028000000000000004
name: Dot Precision@5
- type: dot_precision@10
value: 0.016
name: Dot Precision@10
- type: dot_recall@1
value: 0.02
name: Dot Recall@1
- type: dot_recall@3
value: 0.12
name: Dot Recall@3
- type: dot_recall@5
value: 0.14
name: Dot Recall@5
- type: dot_recall@10
value: 0.16
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.09097486504648661
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.06833333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.07512669033130494
name: Dot Map@100
- type: query_active_dims
value: 1119.800048828125
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9633117079867596
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 936.6198120117188
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9693132883817667
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.64
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.19333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.074
name: Dot Precision@10
- type: dot_recall@1
value: 0.335
name: Dot Recall@1
- type: dot_recall@3
value: 0.515
name: Dot Recall@3
- type: dot_recall@5
value: 0.545
name: Dot Recall@5
- type: dot_recall@10
value: 0.63
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4915918543191975
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4533333333333332
name: Dot Mrr@10
- type: dot_map@100
value: 0.4491987141282297
name: Dot Map@100
- type: query_active_dims
value: 299.3399963378906
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9901926480460688
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 1136.7972412109375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9627548246769236
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.5714285714285714
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8163265306122449
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9591836734693877
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.5714285714285714
name: Dot Precision@1
- type: dot_precision@3
value: 0.5578231292517006
name: Dot Precision@3
- type: dot_precision@5
value: 0.5387755102040817
name: Dot Precision@5
- type: dot_precision@10
value: 0.4265306122448979
name: Dot Precision@10
- type: dot_recall@1
value: 0.03907945255462338
name: Dot Recall@1
- type: dot_recall@3
value: 0.1141786135299426
name: Dot Recall@3
- type: dot_recall@5
value: 0.17607960990710933
name: Dot Recall@5
- type: dot_recall@10
value: 0.26785623174003165
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4784358025208683
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7194120505344994
name: Dot Mrr@10
- type: dot_map@100
value: 0.3382724018630733
name: Dot Map@100
- type: query_active_dims
value: 39.1020393371582
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9987188900027142
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 630.3636474609375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9793472365028197
name: Corpus Sparsity Ratio
splade-distilbert-base-uncased trained on GooAQ
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-gooaq-peft")
# Run inference
queries = [
"how many days for doxycycline to work on sinus infection?",
]
documents = [
'Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks for chronic sinusitis.',
'Most engagements typically have a cocktail dress code, calling for dresses at, or slightly above, knee-length and high heels. If your party states a different dress code, however, such as semi-formal or dressy-casual, you may need to dress up or down accordingly.',
'The average service life of a gas furnace is about 15 years, but the actual life span of an individual unit can vary greatly. There are a number of contributing factors that determine the age a furnace reaches: The quality of the equipment.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[93.4242, 28.8323, 33.3142]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.22 | 0.28 | 0.22 | 0.22 | 0.52 | 0.58 | 0.14 | 0.48 | 0.34 | 0.28 | 0.02 | 0.36 | 0.5714 |
dot_accuracy@3 | 0.4 | 0.42 | 0.36 | 0.28 | 0.74 | 0.66 | 0.26 | 0.64 | 0.48 | 0.58 | 0.12 | 0.54 | 0.8163 |
dot_accuracy@5 | 0.5 | 0.44 | 0.5 | 0.36 | 0.84 | 0.72 | 0.36 | 0.78 | 0.58 | 0.62 | 0.14 | 0.58 | 0.9592 |
dot_accuracy@10 | 0.7 | 0.48 | 0.56 | 0.46 | 0.88 | 0.88 | 0.46 | 0.84 | 0.74 | 0.8 | 0.16 | 0.64 | 1.0 |
dot_precision@1 | 0.22 | 0.28 | 0.22 | 0.22 | 0.52 | 0.58 | 0.14 | 0.48 | 0.34 | 0.28 | 0.02 | 0.36 | 0.5714 |
dot_precision@3 | 0.1333 | 0.2533 | 0.12 | 0.1133 | 0.46 | 0.22 | 0.1067 | 0.2667 | 0.16 | 0.24 | 0.04 | 0.1933 | 0.5578 |
dot_precision@5 | 0.1 | 0.208 | 0.1 | 0.084 | 0.452 | 0.148 | 0.104 | 0.204 | 0.12 | 0.172 | 0.028 | 0.124 | 0.5388 |
dot_precision@10 | 0.07 | 0.172 | 0.056 | 0.058 | 0.384 | 0.09 | 0.068 | 0.114 | 0.078 | 0.136 | 0.016 | 0.074 | 0.4265 |
dot_recall@1 | 0.22 | 0.0103 | 0.2 | 0.0917 | 0.0497 | 0.56 | 0.0793 | 0.24 | 0.3267 | 0.0587 | 0.02 | 0.335 | 0.0391 |
dot_recall@3 | 0.4 | 0.0243 | 0.33 | 0.1533 | 0.1035 | 0.63 | 0.157 | 0.4 | 0.4467 | 0.1477 | 0.12 | 0.515 | 0.1142 |
dot_recall@5 | 0.5 | 0.0332 | 0.46 | 0.1767 | 0.1643 | 0.7 | 0.2572 | 0.51 | 0.5407 | 0.1757 | 0.14 | 0.545 | 0.1761 |
dot_recall@10 | 0.7 | 0.0585 | 0.52 | 0.2247 | 0.2407 | 0.8467 | 0.3007 | 0.57 | 0.7107 | 0.2797 | 0.16 | 0.63 | 0.2679 |
dot_ndcg@10 | 0.4332 | 0.1972 | 0.3557 | 0.1943 | 0.4566 | 0.6815 | 0.2172 | 0.4894 | 0.5025 | 0.2557 | 0.091 | 0.4916 | 0.4784 |
dot_mrr@10 | 0.3512 | 0.3504 | 0.322 | 0.2767 | 0.6437 | 0.6464 | 0.2306 | 0.5976 | 0.4504 | 0.4341 | 0.0683 | 0.4533 | 0.7194 |
dot_map@100 | 0.3625 | 0.0641 | 0.3138 | 0.1549 | 0.3021 | 0.6297 | 0.1718 | 0.4127 | 0.4441 | 0.168 | 0.0751 | 0.4492 | 0.3383 |
query_active_dims | 114.84 | 185.0 | 98.22 | 259.86 | 191.26 | 249.54 | 87.4 | 151.22 | 51.32 | 195.28 | 1119.8 | 299.34 | 39.102 |
query_sparsity_ratio | 0.9962 | 0.9939 | 0.9968 | 0.9915 | 0.9937 | 0.9918 | 0.9971 | 0.995 | 0.9983 | 0.9936 | 0.9633 | 0.9902 | 0.9987 |
corpus_active_dims | 504.951 | 1286.7938 | 841.8668 | 1094.6027 | 809.2099 | 1358.9602 | 517.6329 | 904.4684 | 59.1465 | 1035.0269 | 936.6198 | 1136.7972 | 630.3636 |
corpus_sparsity_ratio | 0.9835 | 0.9578 | 0.9724 | 0.9641 | 0.9735 | 0.9555 | 0.983 | 0.9704 | 0.9981 | 0.9661 | 0.9693 | 0.9628 | 0.9793 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.24 |
dot_accuracy@3 | 0.3933 |
dot_accuracy@5 | 0.48 |
dot_accuracy@10 | 0.58 |
dot_precision@1 | 0.24 |
dot_precision@3 | 0.1689 |
dot_precision@5 | 0.136 |
dot_precision@10 | 0.0993 |
dot_recall@1 | 0.1434 |
dot_recall@3 | 0.2514 |
dot_recall@5 | 0.3311 |
dot_recall@10 | 0.4262 |
dot_ndcg@10 | 0.3287 |
dot_mrr@10 | 0.3412 |
dot_map@100 | 0.2468 |
query_active_dims | 132.6867 |
query_sparsity_ratio | 0.9957 |
corpus_active_dims | 812.3068 |
corpus_sparsity_ratio | 0.9734 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.3255 |
dot_accuracy@3 | 0.4843 |
dot_accuracy@5 | 0.5676 |
dot_accuracy@10 | 0.6615 |
dot_precision@1 | 0.3255 |
dot_precision@3 | 0.2203 |
dot_precision@5 | 0.1833 |
dot_precision@10 | 0.134 |
dot_recall@1 | 0.1716 |
dot_recall@3 | 0.2724 |
dot_recall@5 | 0.3368 |
dot_recall@10 | 0.4238 |
dot_ndcg@10 | 0.3726 |
dot_mrr@10 | 0.4265 |
dot_map@100 | 0.2989 |
query_active_dims | 234.3143 |
query_sparsity_ratio | 0.9923 |
corpus_active_dims | 808.1458 |
corpus_sparsity_ratio | 0.9735 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 99,000 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.79 tokens
- max: 24 tokens
- min: 14 tokens
- mean: 60.02 tokens
- max: 153 tokens
- Samples:
question answer what are the 5 characteristics of a star?
Key Concept: Characteristics used to classify stars include color, temperature, size, composition, and brightness.
are copic markers alcohol ink?
Copic Ink is alcohol-based and flammable. Keep away from direct sunlight and extreme temperatures.
what is the difference between appellate term and appellate division?
Appellate terms An appellate term is an intermediate appellate court that hears appeals from the inferior courts within their designated counties or judicial districts, and are intended to ease the workload on the Appellate Division and provide a less expensive forum closer to the people.
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.93 tokens
- max: 25 tokens
- min: 14 tokens
- mean: 60.84 tokens
- max: 127 tokens
- Samples:
question answer should you take ibuprofen with high blood pressure?
In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.
how old do you have to be to work in sc?
The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.
how to write a topic proposal for a research paper?
['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.']
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0323 | 100 | 234.4946 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0646 | 200 | 90.2538 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0970 | 300 | 35.2404 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1293 | 400 | 15.0794 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1616 | 500 | 5.7405 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1939 | 600 | 2.6706 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1972 | 610 | - | 1.5711 | 0.1942 | 0.1431 | 0.1568 | 0.1647 | - | - | - | - | - | - | - | - | - | - |
0.2262 | 700 | 1.4867 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2586 | 800 | 0.9108 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2909 | 900 | 0.7938 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3232 | 1000 | 0.6679 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3555 | 1100 | 0.5505 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3878 | 1200 | 0.4851 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3943 | 1220 | - | 0.3510 | 0.3406 | 0.1831 | 0.2740 | 0.2659 | - | - | - | - | - | - | - | - | - | - |
0.4202 | 1300 | 0.4882 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4525 | 1400 | 0.4156 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4848 | 1500 | 0.452 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5171 | 1600 | 0.3446 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5495 | 1700 | 0.307 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5818 | 1800 | 0.3416 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5915 | 1830 | - | 0.2682 | 0.3942 | 0.1917 | 0.3140 | 0.3000 | - | - | - | - | - | - | - | - | - | - |
0.6141 | 1900 | 0.2875 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6464 | 2000 | 0.2989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6787 | 2100 | 0.3032 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7111 | 2200 | 0.3843 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7434 | 2300 | 0.2845 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7757 | 2400 | 0.2838 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7886 | 2440 | - | 0.2365 | 0.4144 | 0.1952 | 0.3378 | 0.3158 | - | - | - | - | - | - | - | - | - | - |
0.8080 | 2500 | 0.2422 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8403 | 2600 | 0.2546 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8727 | 2700 | 0.2683 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9050 | 2800 | 0.2923 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9373 | 2900 | 0.301 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9696 | 3000 | 0.2796 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9858 | 3050 | - | 0.2284 | 0.4332 | 0.1972 | 0.3557 | 0.3287 | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.4332 | 0.1972 | 0.3557 | 0.3726 | 0.1943 | 0.4566 | 0.6815 | 0.2172 | 0.4894 | 0.5025 | 0.2557 | 0.0910 | 0.4916 | 0.4784 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.034 kWh
- Carbon Emitted: 0.013 kg of CO2
- Hours Used: 0.145 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu126
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}