metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: >-
The term emergent literacy signals a belief that, in a literate society,
young children even one and two year olds, are in the process of becoming
literate”. ... Gray (1956:21) notes: Functional literacy is used for the
training of adults to 'meet independently the reading and writing demands
placed on them'.
- text: >-
Rey is seemingly confirmed as being The Chosen One per a quote by a
Lucasfilm production designer who worked on The Rise of Skywalker.
- text: are union gun safes fireproof?
- text: >-
Fruit is an essential part of a healthy diet — and may aid weight loss.
Most fruits are low in calories while high in nutrients and fiber, which
can boost your fullness. Keep in mind that it's best to eat fruits whole
rather than juiced. What's more, simply eating fruit is not the key to
weight loss.
- text: >-
Treatment of suspected bacterial infection is with antibiotics, such as
amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute
sinusitis and for up to 6 weeks for chronic sinusitis.
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
emissions: 17.39611110898171
energy_consumed: 0.044754364806411366
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.194
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: splade-distilbert-base-uncased trained on GooAQ
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO
type: NanoMSMARCO
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.52
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.1733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.07
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.52
name: Dot Recall@3
- type: dot_recall@5
value: 0.62
name: Dot Recall@5
- type: dot_recall@10
value: 0.7
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5083136502691767
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4472222222222222
name: Dot Mrr@10
- type: dot_map@100
value: 0.46301971681569204
name: Dot Map@100
- type: query_active_dims
value: 94.44000244140625
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9969058383316491
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 430.5700988769531
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9858931230300454
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.52
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.1733333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.07
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.52
name: Dot Recall@3
- type: dot_recall@5
value: 0.62
name: Dot Recall@5
- type: dot_recall@10
value: 0.7
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5083136502691767
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4472222222222222
name: Dot Mrr@10
- type: dot_map@100
value: 0.46301971681569204
name: Dot Map@100
- type: query_active_dims
value: 94.44000244140625
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9969058383316491
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 430.5700988769531
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9858931230300454
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus
type: NanoNFCorpus
metrics:
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.31999999999999995
name: Dot Precision@3
- type: dot_precision@5
value: 0.28800000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.23399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.02092621665706462
name: Dot Recall@1
- type: dot_recall@3
value: 0.05736564836154951
name: Dot Recall@3
- type: dot_recall@5
value: 0.0742552886400133
name: Dot Recall@5
- type: dot_recall@10
value: 0.09748508422098728
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2685885617919309
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4113015873015873
name: Dot Mrr@10
- type: dot_map@100
value: 0.10465320687818563
name: Dot Map@100
- type: query_active_dims
value: 117.86000061035156
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9961385230125696
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 741.1876220703125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9757162826135143
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.31999999999999995
name: Dot Precision@3
- type: dot_precision@5
value: 0.28800000000000003
name: Dot Precision@5
- type: dot_precision@10
value: 0.23399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.02092621665706462
name: Dot Recall@1
- type: dot_recall@3
value: 0.05736564836154951
name: Dot Recall@3
- type: dot_recall@5
value: 0.0742552886400133
name: Dot Recall@5
- type: dot_recall@10
value: 0.09748508422098728
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2685885617919309
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4113015873015873
name: Dot Mrr@10
- type: dot_map@100
value: 0.10465320687818563
name: Dot Map@100
- type: query_active_dims
value: 117.86000061035156
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9961385230125696
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 741.1876220703125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9757162826135143
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ
type: NanoNQ
metrics:
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.18
name: Dot Precision@3
- type: dot_precision@5
value: 0.12000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.07600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.3
name: Dot Recall@1
- type: dot_recall@3
value: 0.52
name: Dot Recall@3
- type: dot_recall@5
value: 0.57
name: Dot Recall@5
- type: dot_recall@10
value: 0.7
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4981713467273886
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4433809523809524
name: Dot Mrr@10
- type: dot_map@100
value: 0.4411203459537373
name: Dot Map@100
- type: query_active_dims
value: 103.13999938964844
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9966207981328338
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 552.16943359375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9819091332942222
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.3
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.54
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.76
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3
name: Dot Precision@1
- type: dot_precision@3
value: 0.18
name: Dot Precision@3
- type: dot_precision@5
value: 0.12000000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.07600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.3
name: Dot Recall@1
- type: dot_recall@3
value: 0.52
name: Dot Recall@3
- type: dot_recall@5
value: 0.57
name: Dot Recall@5
- type: dot_recall@10
value: 0.7
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4981713467273886
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4433809523809524
name: Dot Mrr@10
- type: dot_map@100
value: 0.4411203459537373
name: Dot Map@100
- type: query_active_dims
value: 103.13999938964844
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9966207981328338
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 552.16943359375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9819091332942222
name: Corpus Sparsity Ratio
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean
type: NanoBEIR_mean
metrics:
- type: dot_accuracy@1
value: 0.30666666666666664
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5333333333333333
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.5933333333333334
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.6933333333333334
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.30666666666666664
name: Dot Precision@1
- type: dot_precision@3
value: 0.22444444444444445
name: Dot Precision@3
- type: dot_precision@5
value: 0.17733333333333334
name: Dot Precision@5
- type: dot_precision@10
value: 0.12666666666666668
name: Dot Precision@10
- type: dot_recall@1
value: 0.21364207221902154
name: Dot Recall@1
- type: dot_recall@3
value: 0.3657885494538499
name: Dot Recall@3
- type: dot_recall@5
value: 0.421418429546671
name: Dot Recall@5
- type: dot_recall@10
value: 0.49916169474032906
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.42502451959616544
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.43396825396825395
name: Dot Mrr@10
- type: dot_map@100
value: 0.33626442321587163
name: Dot Map@100
- type: query_active_dims
value: 105.14666748046875
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9965550531590175
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 547.9445287970715
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9820475549178602
name: Corpus Sparsity Ratio
- type: dot_accuracy@1
value: 0.3655886970172685
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5519937205651492
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6337833594976452
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7169230769230768
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.3655886970172685
name: Dot Precision@1
- type: dot_precision@3
value: 0.2505494505494505
name: Dot Precision@3
- type: dot_precision@5
value: 0.20602825745682887
name: Dot Precision@5
- type: dot_precision@10
value: 0.14839246467817896
name: Dot Precision@10
- type: dot_recall@1
value: 0.19010384074919356
name: Dot Recall@1
- type: dot_recall@3
value: 0.32704484579274
name: Dot Recall@3
- type: dot_recall@5
value: 0.39456504537988873
name: Dot Recall@5
- type: dot_recall@10
value: 0.47685273851096455
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4222423106928735
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.47784013605442177
name: Dot Mrr@10
- type: dot_map@100
value: 0.34926499736508426
name: Dot Map@100
- type: query_active_dims
value: 210.38829069916383
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9931069952591848
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 515.9201662327877
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9830967772022544
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoClimateFEVER
type: NanoClimateFEVER
metrics:
- type: dot_accuracy@1
value: 0.2
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.32
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.44
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.52
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.2
name: Dot Precision@1
- type: dot_precision@3
value: 0.10666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.08800000000000001
name: Dot Precision@5
- type: dot_precision@10
value: 0.06
name: Dot Precision@10
- type: dot_recall@1
value: 0.08833333333333332
name: Dot Recall@1
- type: dot_recall@3
value: 0.1383333333333333
name: Dot Recall@3
- type: dot_recall@5
value: 0.18899999999999997
name: Dot Recall@5
- type: dot_recall@10
value: 0.24733333333333335
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.1989737274366133
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.28883333333333333
name: Dot Mrr@10
- type: dot_map@100
value: 0.1570276263159355
name: Dot Map@100
- type: query_active_dims
value: 322.94000244140625
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9894194350815344
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 559.904052734375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9816557220125033
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoDBPedia
type: NanoDBPedia
metrics:
- type: dot_accuracy@1
value: 0.58
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.76
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.84
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.58
name: Dot Precision@1
- type: dot_precision@3
value: 0.4666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.44799999999999995
name: Dot Precision@5
- type: dot_precision@10
value: 0.38000000000000006
name: Dot Precision@10
- type: dot_recall@1
value: 0.057023602844467905
name: Dot Recall@1
- type: dot_recall@3
value: 0.1261845127382798
name: Dot Recall@3
- type: dot_recall@5
value: 0.19343214279368734
name: Dot Recall@5
- type: dot_recall@10
value: 0.2774143036317426
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.476174156780402
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6897777777777777
name: Dot Mrr@10
- type: dot_map@100
value: 0.3606146481942123
name: Dot Map@100
- type: query_active_dims
value: 127.16000366210938
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9958338246621418
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 502.05657958984375
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.983550993395261
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFEVER
type: NanoFEVER
metrics:
- type: dot_accuracy@1
value: 0.38
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.66
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38
name: Dot Precision@1
- type: dot_precision@3
value: 0.18666666666666668
name: Dot Precision@3
- type: dot_precision@5
value: 0.132
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.3666666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.5466666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.6266666666666666
name: Dot Recall@5
- type: dot_recall@10
value: 0.7666666666666666
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.558322903157265
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5037619047619047
name: Dot Mrr@10
- type: dot_map@100
value: 0.49508652136623893
name: Dot Map@100
- type: query_active_dims
value: 341.5
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9888113491907476
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 675.0518188476562
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9778831066493788
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoFiQA2018
type: NanoFiQA2018
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.56
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.6
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.22
name: Dot Precision@3
- type: dot_precision@5
value: 0.172
name: Dot Precision@5
- type: dot_precision@10
value: 0.1
name: Dot Precision@10
- type: dot_recall@1
value: 0.16691269841269843
name: Dot Recall@1
- type: dot_recall@3
value: 0.28874603174603175
name: Dot Recall@3
- type: dot_recall@5
value: 0.3914920634920635
name: Dot Recall@5
- type: dot_recall@10
value: 0.45304761904761903
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.3614112634088202
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4161904761904761
name: Dot Mrr@10
- type: dot_map@100
value: 0.2967904293410732
name: Dot Map@100
- type: query_active_dims
value: 83.80000305175781
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9972544393207602
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 415.08380126953125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9864005045124982
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoHotpotQA
type: NanoHotpotQA
metrics:
- type: dot_accuracy@1
value: 0.64
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.76
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.86
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.92
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.64
name: Dot Precision@1
- type: dot_precision@3
value: 0.38666666666666655
name: Dot Precision@3
- type: dot_precision@5
value: 0.26399999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.144
name: Dot Precision@10
- type: dot_recall@1
value: 0.32
name: Dot Recall@1
- type: dot_recall@3
value: 0.58
name: Dot Recall@3
- type: dot_recall@5
value: 0.66
name: Dot Recall@5
- type: dot_recall@10
value: 0.72
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6440206432819057
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.7276111111111111
name: Dot Mrr@10
- type: dot_map@100
value: 0.5728876536286595
name: Dot Map@100
- type: query_active_dims
value: 181.72000122070312
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9940462616728687
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 580.4143676757812
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9809837373803886
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoQuoraRetrieval
type: NanoQuoraRetrieval
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.64
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.72
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.18666666666666668
name: Dot Precision@3
- type: dot_precision@5
value: 0.136
name: Dot Precision@5
- type: dot_precision@10
value: 0.07600000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.3066666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.5106666666666666
name: Dot Recall@3
- type: dot_recall@5
value: 0.6106666666666667
name: Dot Recall@5
- type: dot_recall@10
value: 0.6906666666666667
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5024131501177981
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.45416666666666666
name: Dot Mrr@10
- type: dot_map@100
value: 0.45581081139277496
name: Dot Map@100
- type: query_active_dims
value: 68.72000122070312
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9977485092320063
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 79.2294921875
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9974041841233373
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSCIDOCS
type: NanoSCIDOCS
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.68
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.25333333333333335
name: Dot Precision@3
- type: dot_precision@5
value: 0.20799999999999996
name: Dot Precision@5
- type: dot_precision@10
value: 0.146
name: Dot Precision@10
- type: dot_recall@1
value: 0.06866666666666667
name: Dot Recall@1
- type: dot_recall@3
value: 0.15766666666666668
name: Dot Recall@3
- type: dot_recall@5
value: 0.21466666666666662
name: Dot Recall@5
- type: dot_recall@10
value: 0.30066666666666664
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.2836948178391744
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4724047619047619
name: Dot Mrr@10
- type: dot_map@100
value: 0.20698613017114634
name: Dot Map@100
- type: query_active_dims
value: 210.05999755859375
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9931177512103206
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 610.8638916015625
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9799861119323255
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoArguAna
type: NanoArguAna
metrics:
- type: dot_accuracy@1
value: 0.08
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.26
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.28
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.34
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.08
name: Dot Precision@1
- type: dot_precision@3
value: 0.08666666666666666
name: Dot Precision@3
- type: dot_precision@5
value: 0.056000000000000015
name: Dot Precision@5
- type: dot_precision@10
value: 0.034
name: Dot Precision@10
- type: dot_recall@1
value: 0.08
name: Dot Recall@1
- type: dot_recall@3
value: 0.26
name: Dot Recall@3
- type: dot_recall@5
value: 0.28
name: Dot Recall@5
- type: dot_recall@10
value: 0.34
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.21332166570570366
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.17257936507936505
name: Dot Mrr@10
- type: dot_map@100
value: 0.18781587309924735
name: Dot Map@100
- type: query_active_dims
value: 664
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9782452001834742
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 613.4024658203125
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.979902939983608
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoSciFact
type: NanoSciFact
metrics:
- type: dot_accuracy@1
value: 0.36
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.48
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.54
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.62
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.36
name: Dot Precision@1
- type: dot_precision@3
value: 0.16666666666666669
name: Dot Precision@3
- type: dot_precision@5
value: 0.124
name: Dot Precision@5
- type: dot_precision@10
value: 0.07200000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.335
name: Dot Recall@1
- type: dot_recall@3
value: 0.44
name: Dot Recall@3
- type: dot_recall@5
value: 0.525
name: Dot Recall@5
- type: dot_recall@10
value: 0.61
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.4739942979888677
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.4374126984126983
name: Dot Mrr@10
- type: dot_map@100
value: 0.4391076754874009
name: Dot Map@100
- type: query_active_dims
value: 371
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9878448332350436
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 683.730712890625
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9775987578503826
name: Corpus Sparsity Ratio
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoTouche2020
type: NanoTouche2020
metrics:
- type: dot_accuracy@1
value: 0.6326530612244898
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7959183673469388
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9591836734693877
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 1
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.6326530612244898
name: Dot Precision@1
- type: dot_precision@3
value: 0.5238095238095237
name: Dot Precision@3
- type: dot_precision@5
value: 0.5183673469387755
name: Dot Precision@5
- type: dot_precision@10
value: 0.4551020408163265
name: Dot Precision@10
- type: dot_recall@1
value: 0.0411540784919523
name: Dot Recall@1
- type: dot_recall@3
value: 0.10595346912642524
name: Dot Recall@3
- type: dot_recall@5
value: 0.17416609501278957
name: Dot Recall@5
- type: dot_recall@10
value: 0.2958052604088571
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5017498545023089
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.747278911564626
name: Dot Mrr@10
- type: dot_map@100
value: 0.35952432710179216
name: Dot Map@100
- type: query_active_dims
value: 45.408164978027344
name: Query Active Dims
- type: query_sparsity_ratio
value: 0.9985122808145591
name: Query Sparsity Ratio
- type: corpus_active_dims
value: 522.2584838867188
name: Corpus Active Dims
- type: corpus_sparsity_ratio
value: 0.9828891132990394
name: Corpus Sparsity Ratio
splade-distilbert-base-uncased trained on GooAQ
This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: distilbert/distilbert-base-uncased
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-distilbert-base-uncased-gooaq-peft-r512")
# Run inference
queries = [
"how many days for doxycycline to work on sinus infection?",
]
documents = [
'Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks for chronic sinusitis.',
'Most engagements typically have a cocktail dress code, calling for dresses at, or slightly above, knee-length and high heels. If your party states a different dress code, however, such as semi-formal or dressy-casual, you may need to dress up or down accordingly.',
'The average service life of a gas furnace is about 15 years, but the actual life span of an individual unit can vary greatly. There are a number of contributing factors that determine the age a furnace reaches: The quality of the equipment.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[95.1919, 19.8228, 34.4896]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.32 | 0.3 | 0.3 | 0.2 | 0.58 | 0.38 | 0.32 | 0.64 | 0.32 | 0.32 | 0.08 | 0.36 | 0.6327 |
dot_accuracy@3 | 0.52 | 0.54 | 0.54 | 0.32 | 0.76 | 0.56 | 0.48 | 0.76 | 0.56 | 0.6 | 0.26 | 0.48 | 0.7959 |
dot_accuracy@5 | 0.62 | 0.56 | 0.6 | 0.44 | 0.84 | 0.66 | 0.56 | 0.86 | 0.64 | 0.68 | 0.28 | 0.54 | 0.9592 |
dot_accuracy@10 | 0.7 | 0.62 | 0.76 | 0.52 | 0.92 | 0.8 | 0.6 | 0.92 | 0.72 | 0.8 | 0.34 | 0.62 | 1.0 |
dot_precision@1 | 0.32 | 0.3 | 0.3 | 0.2 | 0.58 | 0.38 | 0.32 | 0.64 | 0.32 | 0.32 | 0.08 | 0.36 | 0.6327 |
dot_precision@3 | 0.1733 | 0.32 | 0.18 | 0.1067 | 0.4667 | 0.1867 | 0.22 | 0.3867 | 0.1867 | 0.2533 | 0.0867 | 0.1667 | 0.5238 |
dot_precision@5 | 0.124 | 0.288 | 0.12 | 0.088 | 0.448 | 0.132 | 0.172 | 0.264 | 0.136 | 0.208 | 0.056 | 0.124 | 0.5184 |
dot_precision@10 | 0.07 | 0.234 | 0.076 | 0.06 | 0.38 | 0.082 | 0.1 | 0.144 | 0.076 | 0.146 | 0.034 | 0.072 | 0.4551 |
dot_recall@1 | 0.32 | 0.0209 | 0.3 | 0.0883 | 0.057 | 0.3667 | 0.1669 | 0.32 | 0.3067 | 0.0687 | 0.08 | 0.335 | 0.0412 |
dot_recall@3 | 0.52 | 0.0574 | 0.52 | 0.1383 | 0.1262 | 0.5467 | 0.2887 | 0.58 | 0.5107 | 0.1577 | 0.26 | 0.44 | 0.106 |
dot_recall@5 | 0.62 | 0.0743 | 0.57 | 0.189 | 0.1934 | 0.6267 | 0.3915 | 0.66 | 0.6107 | 0.2147 | 0.28 | 0.525 | 0.1742 |
dot_recall@10 | 0.7 | 0.0975 | 0.7 | 0.2473 | 0.2774 | 0.7667 | 0.453 | 0.72 | 0.6907 | 0.3007 | 0.34 | 0.61 | 0.2958 |
dot_ndcg@10 | 0.5083 | 0.2686 | 0.4982 | 0.199 | 0.4762 | 0.5583 | 0.3614 | 0.644 | 0.5024 | 0.2837 | 0.2133 | 0.474 | 0.5017 |
dot_mrr@10 | 0.4472 | 0.4113 | 0.4434 | 0.2888 | 0.6898 | 0.5038 | 0.4162 | 0.7276 | 0.4542 | 0.4724 | 0.1726 | 0.4374 | 0.7473 |
dot_map@100 | 0.463 | 0.1047 | 0.4411 | 0.157 | 0.3606 | 0.4951 | 0.2968 | 0.5729 | 0.4558 | 0.207 | 0.1878 | 0.4391 | 0.3595 |
query_active_dims | 94.44 | 117.86 | 103.14 | 322.94 | 127.16 | 341.5 | 83.8 | 181.72 | 68.72 | 210.06 | 664.0 | 371.0 | 45.4082 |
query_sparsity_ratio | 0.9969 | 0.9961 | 0.9966 | 0.9894 | 0.9958 | 0.9888 | 0.9973 | 0.994 | 0.9977 | 0.9931 | 0.9782 | 0.9878 | 0.9985 |
corpus_active_dims | 430.5701 | 741.1876 | 552.1694 | 559.9041 | 502.0566 | 675.0518 | 415.0838 | 580.4144 | 79.2295 | 610.8639 | 613.4025 | 683.7307 | 522.2585 |
corpus_sparsity_ratio | 0.9859 | 0.9757 | 0.9819 | 0.9817 | 0.9836 | 0.9779 | 0.9864 | 0.981 | 0.9974 | 0.98 | 0.9799 | 0.9776 | 0.9829 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.3067 |
dot_accuracy@3 | 0.5333 |
dot_accuracy@5 | 0.5933 |
dot_accuracy@10 | 0.6933 |
dot_precision@1 | 0.3067 |
dot_precision@3 | 0.2244 |
dot_precision@5 | 0.1773 |
dot_precision@10 | 0.1267 |
dot_recall@1 | 0.2136 |
dot_recall@3 | 0.3658 |
dot_recall@5 | 0.4214 |
dot_recall@10 | 0.4992 |
dot_ndcg@10 | 0.425 |
dot_mrr@10 | 0.434 |
dot_map@100 | 0.3363 |
query_active_dims | 105.1467 |
query_sparsity_ratio | 0.9966 |
corpus_active_dims | 547.9445 |
corpus_sparsity_ratio | 0.982 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.3656 |
dot_accuracy@3 | 0.552 |
dot_accuracy@5 | 0.6338 |
dot_accuracy@10 | 0.7169 |
dot_precision@1 | 0.3656 |
dot_precision@3 | 0.2505 |
dot_precision@5 | 0.206 |
dot_precision@10 | 0.1484 |
dot_recall@1 | 0.1901 |
dot_recall@3 | 0.327 |
dot_recall@5 | 0.3946 |
dot_recall@10 | 0.4769 |
dot_ndcg@10 | 0.4222 |
dot_mrr@10 | 0.4778 |
dot_map@100 | 0.3493 |
query_active_dims | 210.3883 |
query_sparsity_ratio | 0.9931 |
corpus_active_dims | 515.9202 |
corpus_sparsity_ratio | 0.9831 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 99,000 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.79 tokens
- max: 24 tokens
- min: 14 tokens
- mean: 60.02 tokens
- max: 153 tokens
- Samples:
question answer what are the 5 characteristics of a star?
Key Concept: Characteristics used to classify stars include color, temperature, size, composition, and brightness.
are copic markers alcohol ink?
Copic Ink is alcohol-based and flammable. Keep away from direct sunlight and extreme temperatures.
what is the difference between appellate term and appellate division?
Appellate terms An appellate term is an intermediate appellate court that hears appeals from the inferior courts within their designated counties or judicial districts, and are intended to ease the workload on the Appellate Division and provide a less expensive forum closer to the people.
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.93 tokens
- max: 25 tokens
- min: 14 tokens
- mean: 60.84 tokens
- max: 127 tokens
- Samples:
question answer should you take ibuprofen with high blood pressure?
In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.
how old do you have to be to work in sc?
The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.
how to write a topic proposal for a research paper?
['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.']
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')", "document_regularizer_weight": 3e-05, "query_regularizer_weight": 5e-05 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 1bf16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0323 | 100 | 28.28 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0646 | 200 | 0.4861 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.0970 | 300 | 0.2953 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1293 | 400 | 0.2281 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1616 | 500 | 0.2219 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1939 | 600 | 0.1677 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1972 | 610 | - | 0.1561 | 0.5037 | 0.2269 | 0.4528 | 0.3945 | - | - | - | - | - | - | - | - | - | - |
0.2262 | 700 | 0.1841 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2586 | 800 | 0.1578 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2909 | 900 | 0.1403 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3232 | 1000 | 0.1738 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3555 | 1100 | 0.1453 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3878 | 1200 | 0.138 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3943 | 1220 | - | 0.1417 | 0.5052 | 0.2372 | 0.4614 | 0.4013 | - | - | - | - | - | - | - | - | - | - |
0.4202 | 1300 | 0.1276 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4525 | 1400 | 0.1376 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4848 | 1500 | 0.1364 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5171 | 1600 | 0.1174 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5495 | 1700 | 0.1107 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5818 | 1800 | 0.1219 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5915 | 1830 | - | 0.0817 | 0.5298 | 0.2767 | 0.4649 | 0.4238 | - | - | - | - | - | - | - | - | - | - |
0.6141 | 1900 | 0.1012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6464 | 2000 | 0.1279 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6787 | 2100 | 0.1057 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7111 | 2200 | 0.1276 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7434 | 2300 | 0.1154 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7757 | 2400 | 0.0964 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7886 | 2440 | - | 0.0926 | 0.5132 | 0.2587 | 0.4951 | 0.4223 | - | - | - | - | - | - | - | - | - | - |
0.8080 | 2500 | 0.0963 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8403 | 2600 | 0.1056 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8727 | 2700 | 0.0969 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9050 | 2800 | 0.0988 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9373 | 2900 | 0.0927 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9696 | 3000 | 0.0856 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9858 | 3050 | - | 0.0783 | 0.5083 | 0.2686 | 0.4982 | 0.425 | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.5083 | 0.2686 | 0.4982 | 0.4222 | 0.1990 | 0.4762 | 0.5583 | 0.3614 | 0.6440 | 0.5024 | 0.2837 | 0.2133 | 0.4740 | 0.5017 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.045 kWh
- Carbon Emitted: 0.017 kg of CO2
- Hours Used: 0.193 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.52.4
- PyTorch: 2.7.1+cu126
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}