tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
8bed20e verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - splade
  - generated_from_trainer
  - dataset_size:99000
  - loss:SpladeLoss
  - loss:SparseDistillKLDivLoss
  - loss:FlopsLoss
base_model: Luyu/co-condenser-marco
widget:
  - text: >-
      The ejection fraction may decrease if: 1  You have weakness of your heart
      muscle, such as dilated cardiomyopathy, which can be caused by a heart
      muscle problem, familial (genetic) cardiomyopathy, or systemic illnesses.
      2  A heart attack has damaged your heart.  You have problems with your
      heart's valves.
  - text: "One thing we avoided: Lots of alternative slime recipes swap Borax for liquid starch, shampoo, body wash, hand soap, contact lens solution, or laundry detergent. Those may seem benign â\x80\x94 and they might be â\x80\x94 but many of them contain derivatives or relatives of sodium borate too."
  - text: how do i get my mvr in pa
  - text: >-
      English is a language whose vocabulary is the composite of a surprising
      range of influences. We have pillaged words from Latin, Greek, Dutch,
      Arabic, Old Norse, Spanish, Italian, Hindi, and more besides to make
      English what it is today.
  - text: >-
      Weed Eater was a string trimmer company founded in 1971 in Houston, Texas
      by George C. Ballas, Sr. , the inventor of the device. The idea for the
      Weed Eater trimmer came to him from the spinning nylon bristles of an
      automatic car wash.He thought that he could come up with a similar
      technique to protect the bark on trees that he was trimming around. His
      company was eventually bought by Emerson Electric and merged with
      Poulan.Poulan/Weed Eater was later purchased by Electrolux, which spun off
      the outdoors division as Husqvarna AB in 2006.Inventor Ballas was the
      father of champion ballroom dancer Corky Ballas and the grandfather of
      Dancing with the Stars dancer Mark Ballas.George Ballas died on June 25,
      2011.he idea for the Weed Eater trimmer came to him from the spinning
      nylon bristles of an automatic car wash. He thought that he could come up
      with a similar technique to protect the bark on trees that he was trimming
      around. His company was eventually bought by Emerson Electric and merged
      with Poulan.
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - dot_accuracy@1
  - dot_accuracy@3
  - dot_accuracy@5
  - dot_accuracy@10
  - dot_precision@1
  - dot_precision@3
  - dot_precision@5
  - dot_precision@10
  - dot_recall@1
  - dot_recall@3
  - dot_recall@5
  - dot_recall@10
  - dot_ndcg@10
  - dot_mrr@10
  - dot_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 78.12595691469743
  energy_consumed: 0.2009919087493695
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.571
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: CoCondenser finetuned on MS MARCO
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoMSMARCO
          type: NanoMSMARCO
        metrics:
          - type: dot_accuracy@1
            value: 0.42
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.72
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.9
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.42
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.18666666666666668
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.14400000000000002
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08999999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.56
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.72
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.9
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6291399713464962
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5467460317460318
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5503396478777393
            name: Dot Map@100
          - type: query_active_dims
            value: 23.31999969482422
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9992359609562013
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 257.3004150390625
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9915700014730665
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNFCorpus
          type: NanoNFCorpus
        metrics:
          - type: dot_accuracy@1
            value: 0.44
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.56
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.66
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.44
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.38666666666666666
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.32800000000000007
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.272
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.041590314149379026
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.07672442108786207
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.09154300468916865
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.1433130618338512
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.33898990155781883
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5123809523809524
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.1505453583653259
            name: Dot Map@100
          - type: query_active_dims
            value: 21.260000228881836
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9993034532393394
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 494.8533630371094
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9837869941996883
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: NanoNQ
          type: NanoNQ
        metrics:
          - type: dot_accuracy@1
            value: 0.44
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.74
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.78
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.84
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.44
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.2533333333333333
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.16399999999999998
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.08999999999999998
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.42
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.7
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.74
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.81
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.6304630848492498
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5837460317460317
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.5712846533262134
            name: Dot Map@100
          - type: query_active_dims
            value: 28
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990826289233995
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 290.61212158203125
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9904786016125408
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-nano-beir
          name: Sparse Nano BEIR
        dataset:
          name: NanoBEIR mean
          type: NanoBEIR_mean
        metrics:
          - type: dot_accuracy@1
            value: 0.43333333333333335
            name: Dot Accuracy@1
          - type: dot_accuracy@3
            value: 0.62
            name: Dot Accuracy@3
          - type: dot_accuracy@5
            value: 0.6999999999999998
            name: Dot Accuracy@5
          - type: dot_accuracy@10
            value: 0.7999999999999999
            name: Dot Accuracy@10
          - type: dot_precision@1
            value: 0.43333333333333335
            name: Dot Precision@1
          - type: dot_precision@3
            value: 0.27555555555555555
            name: Dot Precision@3
          - type: dot_precision@5
            value: 0.21200000000000005
            name: Dot Precision@5
          - type: dot_precision@10
            value: 0.15066666666666664
            name: Dot Precision@10
          - type: dot_recall@1
            value: 0.29386343804979304
            name: Dot Recall@1
          - type: dot_recall@3
            value: 0.44557480702928737
            name: Dot Recall@3
          - type: dot_recall@5
            value: 0.5171810015630562
            name: Dot Recall@5
          - type: dot_recall@10
            value: 0.6177710206112837
            name: Dot Recall@10
          - type: dot_ndcg@10
            value: 0.5328643192511883
            name: Dot Ndcg@10
          - type: dot_mrr@10
            value: 0.5476243386243386
            name: Dot Mrr@10
          - type: dot_map@100
            value: 0.42405655318975954
            name: Dot Map@100
          - type: query_active_dims
            value: 24.19333330790202
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9992073477063135
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 324.00429792464917
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9893845652996315
            name: Corpus Sparsity Ratio

CoCondenser finetuned on MS MARCO

This is a SPLADE Sparse Encoder model finetuned from Luyu/co-condenser-marco using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: Luyu/co-condenser-marco
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-cocondenser-kldiv-marginmse-minilm-temp-4")
# Run inference
queries = [
    "who started gladiator lacrosse",
]
documents = [
    'Weed Eater was a string trimmer company founded in 1971 in Houston, Texas by George C. Ballas, Sr. , the inventor of the device. The idea for the Weed Eater trimmer came to him from the spinning nylon bristles of an automatic car wash.He thought that he could come up with a similar technique to protect the bark on trees that he was trimming around. His company was eventually bought by Emerson Electric and merged with Poulan.Poulan/Weed Eater was later purchased by Electrolux, which spun off the outdoors division as Husqvarna AB in 2006.Inventor Ballas was the father of champion ballroom dancer Corky Ballas and the grandfather of Dancing with the Stars dancer Mark Ballas.George Ballas died on June 25, 2011.he idea for the Weed Eater trimmer came to him from the spinning nylon bristles of an automatic car wash. He thought that he could come up with a similar technique to protect the bark on trees that he was trimming around. His company was eventually bought by Emerson Electric and merged with Poulan.',
    "The earliest types of gladiator were named after Rome's enemies of that time: the Samnite, Thracian and Gaul. The Samnite, heavily armed, elegantly helmed and probably the most popular type, was renamed Secutor and the Gaul renamed Murmillo, once these former enemies had been conquered then absorbed into Rome's Empire.",
    'Summit Hill, PA. Sponsored Topics. Summit Hill is a borough in Carbon County, Pennsylvania, United States. The population was 2,974 at the 2000 census. Summit Hill is located at 40°49â\x80²39â\x80³N 75°51â\x80²57â\x80³W / 40.8275°N 75.86583°W / 40.8275; -75.86583 (40.827420, -75.865892).',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[19.3181, 29.9645, 13.8348]])

Evaluation

Metrics

Sparse Information Retrieval

Metric NanoMSMARCO NanoNFCorpus NanoNQ
dot_accuracy@1 0.42 0.44 0.44
dot_accuracy@3 0.56 0.56 0.74
dot_accuracy@5 0.72 0.6 0.78
dot_accuracy@10 0.9 0.66 0.84
dot_precision@1 0.42 0.44 0.44
dot_precision@3 0.1867 0.3867 0.2533
dot_precision@5 0.144 0.328 0.164
dot_precision@10 0.09 0.272 0.09
dot_recall@1 0.42 0.0416 0.42
dot_recall@3 0.56 0.0767 0.7
dot_recall@5 0.72 0.0915 0.74
dot_recall@10 0.9 0.1433 0.81
dot_ndcg@10 0.6291 0.339 0.6305
dot_mrr@10 0.5467 0.5124 0.5837
dot_map@100 0.5503 0.1505 0.5713
query_active_dims 23.32 21.26 28.0
query_sparsity_ratio 0.9992 0.9993 0.9991
corpus_active_dims 257.3004 494.8534 290.6121
corpus_sparsity_ratio 0.9916 0.9838 0.9905

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4333
dot_accuracy@3 0.62
dot_accuracy@5 0.7
dot_accuracy@10 0.8
dot_precision@1 0.4333
dot_precision@3 0.2756
dot_precision@5 0.212
dot_precision@10 0.1507
dot_recall@1 0.2939
dot_recall@3 0.4456
dot_recall@5 0.5172
dot_recall@10 0.6178
dot_ndcg@10 0.5329
dot_mrr@10 0.5476
dot_map@100 0.4241
query_active_dims 24.1933
query_sparsity_ratio 0.9992
corpus_active_dims 324.0043
corpus_sparsity_ratio 0.9894

Training Details

Training Dataset

Unnamed Dataset

  • Size: 99,000 training samples
  • Columns: query, positive, negative, and label
  • Approximate statistics based on the first 1000 samples:
    query positive negative label
    type string string string list
    details
    • min: 4 tokens
    • mean: 9.2 tokens
    • max: 34 tokens
    • min: 18 tokens
    • mean: 79.86 tokens
    • max: 219 tokens
    • min: 18 tokens
    • mean: 79.96 tokens
    • max: 270 tokens
    • size: 2 elements
  • Samples:
    query positive negative label
    rtn tv network Home Shopping Network. Home Shopping Network (HSN) is an American broadcast, basic cable and satellite television network that is owned by HSN, Inc. (NASDAQ: HSNI), which also owns catalog company Cornerstone Brands. Based in St. Petersburg, Florida, United States, the home shopping channel has former and current sister channels in several other countries. The Public Switched Telephone Network - The public switched telephone network (PSTN) is the international network of circuit-switched telephones. Learn more about PSTN at HowStuffWorks. x [-1.0804121494293213, -5.908488750457764]
    how did president nixon react to the watergate investigation? The Watergate scandal was a major political scandal that occurred in the United States during the early 1970s, following a break-in by five men at the Democratic National Committee headquarters at the Watergate office complex in Washington, D.C. on June 17, 1972, and President Richard Nixon's administration's subsequent attempt to cover up its involvement. After the five burglars were caught and the conspiracy was discovered, Watergate was investigated by the United States Congress. Meanwhile, N The release of the tape was ordered by the Supreme Court on July 24, 1974, in a case known as United States v. Nixon. The court’s decision was unanimous. President Nixon released the tape on August 5. It was one of three conversations he had with Haldeman six days after the Watergate break-in. The tapes prove that he ordered a cover-up of the Watergate burglary. The Smoking Gun tape reveals that Nixon ordered the FBI to abandon its investigation of the break-in. [Read more…] [4.117279052734375, 3.191757917404175]
    what is a summary offense in pennsylvania We provide cost effective house arrest and electronic monitoring services to magisterial district court systems throughout Pennsylvania including York, Harrisburg, Philadelphia and Allentown.In addition, we also serve the York County, Lancaster County and Chester County.e provide cost effective house arrest and electronic monitoring services to magisterial district court systems throughout Pennsylvania including York, Harrisburg, Philadelphia and Allentown. In order to be convicted of Simple Assault, one must cause bodily injury. To be convicted of Aggravated Assault, one must cause serious bodily injury. From my research, Pennsylvania law defines bodily injury as the impairment of physical condition or substantial pain. [-8.954689025878906, -1.3361705541610718]
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseDistillKLDivLoss",
        "lambda_corpus": 0.0005,
        "lambda_query": 0.0005
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,000 evaluation samples
  • Columns: query, positive, negative, and label
  • Approximate statistics based on the first 1000 samples:
    query positive negative label
    type string string string list
    details
    • min: 4 tokens
    • mean: 9.12 tokens
    • max: 37 tokens
    • min: 17 tokens
    • mean: 78.91 tokens
    • max: 239 tokens
    • min: 25 tokens
    • mean: 81.25 tokens
    • max: 239 tokens
    • size: 2 elements
  • Samples:
    query positive negative label
    how long to cook roast beef for Roasting times for beef. Preheat your oven to 160°C (325°F) and use these cooking times to prepare a roast that's moist, tender and delicious. Your roast should be covered with foil for the first half of the roasting time to prevent drying the outer layer.3 to 5lb Joint 1½ to 2 hours.reheat your oven to 160°C (325°F) and use these cooking times to prepare a roast that's moist, tender and delicious. Your roast should be covered with foil for the first half of the roasting time to prevent drying the outer layer. Estimating Cooking Time for Large Beef Roasts. If you roast at a steady 325F (160C), subtract 2 minutes or so per pound. If the roast is refrigerated just before going into the oven, add 2 or 3 minutes per pound. WARNING NOTES: Remember, the rib roast will continue to cook as it sets. [6.501978874206543, 8.214995384216309]
    definition of fire inspection Learn how to do a monthly fire extinguisher inspection in your workplace. Departments must assign an individual to inspect monthly the extinguishers in or adjacent to the department's facilities.1 Read Fire Extinguisher Types and Maintenance for more information.earn how to do a monthly fire extinguisher inspection in your workplace. Departments must assign an individual to inspect monthly the extinguishers in or adjacent to the department's facilities. reconnaissance by fire-a method of reconnaissance in which fire is placed on a suspected enemy position in order to cause the enemy to disclose his presence by moving or returning fire. reconnaissance in force-an offensive operation designed to discover or test the enemy's strength (or to obtain other information). mission undertaken to obtain, by visual observation or other detection methods, information about the activities and resources of an enemy or potential enemy, or to secure data concerning the meteorological, hydrographic, or geographic characteristics of a particular area. [-0.38299351930618286, -0.9372650384902954]
    how many stores does family dollar have Property Spotlight: New Retail Center at Hamilton & Warner - Outlots Available!! Family Dollar is closing stores following a disappointing second quarter. Family Dollar Stores Inc. won’t just be cutting prices in an attempt to boost its business – it’ll be closing stores as well. The Matthews, N.C.-based discount retailer plans to shutter 370 under-performing shops, according to the Charlotte Business Journal. Glassdoor has 1,976 Family Dollar Stores reviews submitted anonymously by Family Dollar Stores employees. Read employee reviews and ratings on Glassdoor to decide if Family Dollar Stores is right for you. [4.726407527923584, 8.284608840942383]
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseDistillKLDivLoss",
        "lambda_corpus": 0.0005,
        "lambda_query": 0.0005
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10
-1 -1 - - 0.0823 0.0412 0.0621 0.0619
0.0162 100 740.8226 - - - - -
0.0323 200 82.2666 - - - - -
0.0485 300 3.3514 - - - - -
0.0646 400 1.9689 - - - - -
0.0808 500 1.8268 1.8327 0.1979 0.1096 0.2507 0.1861
0.0970 600 1.8 - - - - -
0.1131 700 1.613 - - - - -
0.1293 800 1.5977 - - - - -
0.1454 900 1.5886 - - - - -
0.1616 1000 1.3922 1.2983 0.5044 0.2715 0.5851 0.4537
0.1778 1100 1.3708 - - - - -
0.1939 1200 1.383 - - - - -
0.2101 1300 1.2148 - - - - -
0.2262 1400 1.246 - - - - -
0.2424 1500 1.2206 1.0998 0.5329 0.2969 0.5945 0.4748
0.2586 1600 1.1962 - - - - -
0.2747 1700 1.1546 - - - - -
0.2909 1800 1.1319 - - - - -
0.3070 1900 1.1656 - - - - -
0.3232 2000 1.1196 0.9878 0.5667 0.3283 0.6106 0.5019
0.3394 2100 1.0789 - - - - -
0.3555 2200 1.0148 - - - - -
0.3717 2300 1.042 - - - - -
0.3878 2400 1.0274 - - - - -
0.4040 2500 1.0041 0.8749 0.6059 0.3346 0.5942 0.5116
0.4202 2600 1.0557 - - - - -
0.4363 2700 1.0077 - - - - -
0.4525 2800 1.0115 - - - - -
0.4686 2900 0.8708 - - - - -
0.4848 3000 0.8838 0.9321 0.5826 0.3264 0.6354 0.5148
0.5010 3100 0.9103 - - - - -
0.5171 3200 0.8586 - - - - -
0.5333 3300 0.9286 - - - - -
0.5495 3400 0.8645 - - - - -
0.5656 3500 0.9522 0.8105 0.6164 0.3378 0.6131 0.5224
0.5818 3600 0.8636 - - - - -
0.5979 3700 0.8634 - - - - -
0.6141 3800 0.8555 - - - - -
0.6303 3900 0.8447 - - - - -
0.6464 4000 0.8331 0.7699 0.6033 0.3442 0.6016 0.5164
0.6626 4100 0.8292 - - - - -
0.6787 4200 0.8273 - - - - -
0.6949 4300 0.8381 - - - - -
0.7111 4400 0.8035 - - - - -
0.7272 4500 0.8166 0.7743 0.6018 0.3394 0.6060 0.5157
0.7434 4600 0.8245 - - - - -
0.7595 4700 0.7831 - - - - -
0.7757 4800 0.8314 - - - - -
0.7919 4900 0.7994 - - - - -
0.8080 5000 0.8018 0.7058 0.6236 0.3413 0.6378 0.5342
0.8242 5100 0.7652 - - - - -
0.8403 5200 0.7458 - - - - -
0.8565 5300 0.8158 - - - - -
0.8727 5400 0.7887 - - - - -
0.8888 5500 0.7372 0.7389 0.6251 0.3476 0.6327 0.5351
0.9050 5600 0.8 - - - - -
0.9211 5700 0.7724 - - - - -
0.9373 5800 0.7578 - - - - -
0.9535 5900 0.7536 - - - - -
0.9696 6000 0.7982 0.7011 0.6289 0.3396 0.6308 0.5331
0.9858 6100 0.8084 - - - - -
-1 -1 - - 0.6291 0.3390 0.6305 0.5329

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.201 kWh
  • Carbon Emitted: 0.078 kg of CO2
  • Hours Used: 0.571 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseDistillKLDivLoss

@misc{lin2020distillingdenserepresentationsranking,
      title={Distilling Dense Representations for Ranking using Tightly-Coupled Teachers},
      author={Sheng-Chieh Lin and Jheng-Hong Yang and Jimmy Lin},
      year={2020},
      eprint={2010.11386},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2010.11386},
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}