tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
8a97997 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - splade
  - generated_from_trainer
  - dataset_size:10000
  - loss:SpladeLoss
  - loss:SparseMultipleNegativesRankingLoss
  - loss:FlopsLoss
base_model: naver/splade-cocondenser-ensembledistil
widget:
  - text: Two kids at a ballgame wash their hands.
  - text: Two dogs near a lake, while a person rides by on a horse.
  - text: >-
      This mother and her daughter and granddaughter are having car trouble, and
      the poor little girl looks hot out in the heat.
  - text: A young man competes in the Olympics in the pole vaulting competition.
  - text: A man is playing with the brass pots
datasets:
  - sentence-transformers/all-nli
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - pearson_cosine
  - spearman_cosine
  - active_dims
  - sparsity_ratio
co2_eq_emissions:
  emissions: 2.9668555526185707
  energy_consumed: 0.007632725204960537
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.033
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: >-
      splade-cocondenser-ensembledistil trained on Natural Language Inference
      (NLI)
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.8541311579868741
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8470008029984434
            name: Spearman Cosine
          - type: active_dims
            value: 99.30233383178711
            name: Active Dims
          - type: sparsity_ratio
            value: 0.9967465325394211
            name: Sparsity Ratio
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.8223074543214202
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8065254878130631
            name: Spearman Cosine
          - type: active_dims
            value: 95.75453186035156
            name: Active Dims
          - type: sparsity_ratio
            value: 0.9968627700720676
            name: Sparsity Ratio

splade-cocondenser-ensembledistil trained on Natural Language Inference (NLI)

This is a SPLADE Sparse Encoder model finetuned from naver/splade-cocondenser-ensembledistil on the all-nli dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: naver/splade-cocondenser-ensembledistil
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/splade-cocondenser-ensembledistil-nli")
# Run inference
sentences = [
    'A man is sitting in on the side of the street with brass pots.',
    'A man is playing with the brass pots',
    'A group of adults are swimming at the beach.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[16.8617, 12.9505,  0.2749],
#         [12.9505, 20.8479,  0.2440],
#         [ 0.2749,  0.2440, 18.7043]])

Evaluation

Metrics

Semantic Similarity

Metric sts-dev sts-test
pearson_cosine 0.8541 0.8223
spearman_cosine 0.847 0.8065
active_dims 99.3023 95.7545
sparsity_ratio 0.9967 0.9969

Training Details

Training Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 10,000 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 17.38 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 10.7 tokens
    • max: 31 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    A person on a horse jumps over a broken down airplane. A person is training his horse for a competition. 0.5
    A person on a horse jumps over a broken down airplane. A person is at a diner, ordering an omelette. 0.0
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. 1.0
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1, similarity_fct='dot_score')",
        "lambda_corpus": 0.003
    }
    

Evaluation Dataset

all-nli

  • Dataset: all-nli at d482672
  • Size: 1,000 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string float
    details
    • min: 6 tokens
    • mean: 18.44 tokens
    • max: 57 tokens
    • min: 5 tokens
    • mean: 10.57 tokens
    • max: 25 tokens
    • min: 0.0
    • mean: 0.5
    • max: 1.0
  • Samples:
    sentence1 sentence2 score
    Two women are embracing while holding to go packages. The sisters are hugging goodbye while holding to go packages after just eating lunch. 0.5
    Two women are embracing while holding to go packages. Two woman are holding packages. 1.0
    Two women are embracing while holding to go packages. The men are fighting outside a deli. 0.0
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1, similarity_fct='dot_score')",
        "lambda_corpus": 0.003
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • learning_rate: 4e-06
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-06
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss sts-dev_spearman_cosine sts-test_spearman_cosine
-1 -1 - - 0.8366 -
0.032 20 0.8107 - - -
0.064 40 0.7854 - - -
0.096 60 0.7015 - - -
0.128 80 0.7161 - - -
0.16 100 0.724 - - -
0.192 120 0.6883 0.7255 0.8454 -
0.224 140 0.6661 - - -
0.256 160 0.6786 - - -
0.288 180 0.679 - - -
0.32 200 0.8013 - - -
0.352 220 0.6781 - - -
0.384 240 0.667 0.6779 0.8465 -
0.416 260 0.6691 - - -
0.448 280 0.7376 - - -
0.48 300 0.5601 - - -
0.512 320 0.6425 - - -
0.544 340 0.7406 - - -
0.576 360 0.6033 0.6623 0.8469 -
0.608 380 0.8166 - - -
0.64 400 0.5303 - - -
0.672 420 0.614 - - -
0.704 440 0.6253 - - -
0.736 460 0.5467 - - -
0.768 480 0.6804 0.6531 0.8470 -
0.8 500 0.6765 - - -
0.832 520 0.6522 - - -
0.864 540 0.5845 - - -
0.896 560 0.6786 - - -
0.928 580 0.5232 - - -
0.96 600 0.6077 0.6516 0.847 -
0.992 620 0.619 - - -
-1 -1 - - - 0.8065
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.008 kWh
  • Carbon Emitted: 0.003 kg of CO2
  • Hours Used: 0.033 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }