State-of-the-Art NER models - Biomedical domain
Collection
3 items
•
Updated
This is a SpanMarker model trained on the SourceData dataset that can be used for Named Entity Recognition. This SpanMarker model uses bert-base-uncased as the underlying encoder.
Label | Examples |
---|---|
CELL_LINE | "293T", "WM266.4 451Lu", "501mel" |
CELL_TYPE | "BMDMs", "protoplasts", "epithelial" |
DISEASE | "melanoma", "lung metastasis", "breast prostate cancer" |
EXP_ASSAY | "interactions", "Yeast two-hybrid", "BiFC" |
GENEPROD | "CPL1", "FREE1 CPL1", "FREE1" |
ORGANISM | "Arabidopsis", "yeast", "seedlings" |
SMALL_MOLECULE | "polyacrylamide", "CHX", "SDS polyacrylamide" |
SUBCELLULAR | "proteasome", "D-bodies", "plasma" |
TISSUE | "Colon", "roots", "serum" |
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.8345 | 0.8328 | 0.8336 |
CELL_LINE | 0.9060 | 0.8866 | 0.8962 |
CELL_TYPE | 0.7365 | 0.7746 | 0.7551 |
DISEASE | 0.6204 | 0.6531 | 0.6363 |
EXP_ASSAY | 0.7224 | 0.7096 | 0.7160 |
GENEPROD | 0.8944 | 0.8960 | 0.8952 |
ORGANISM | 0.8752 | 0.8902 | 0.8826 |
SMALL_MOLECULE | 0.8304 | 0.8223 | 0.8263 |
SUBCELLULAR | 0.7859 | 0.7699 | 0.7778 |
TISSUE | 0.8134 | 0.8056 | 0.8094 |
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-sourcedata")
# Run inference
entities = model.predict("Comparison of ENCC-derived neurospheres treated with intestinal extract from hypoganglionosis rats, hypoganglionosis treated with Fecal microbiota transplantation (FMT) sham rat. Comparison of neuronal markers. (J) Immunofluorescence stain number of PGP9.5+. Nuclei were stained blue with DAPI; Triangles indicate PGP9.5+.")
You can finetune this model on your own dataset.
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-sourcedata")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-uncased-sourcedata-finetuned")
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 4 | 71.0253 | 2609 |
Entities per sentence | 0 | 8.3186 | 162 |
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
0.5237 | 3000 | 0.0162 | 0.7972 | 0.8162 | 0.8065 | 0.9520 |
1.0473 | 6000 | 0.0155 | 0.8188 | 0.8251 | 0.8219 | 0.9560 |
1.5710 | 9000 | 0.0155 | 0.8213 | 0.8324 | 0.8268 | 0.9563 |
2.0946 | 12000 | 0.0163 | 0.8315 | 0.8347 | 0.8331 | 0.9581 |
2.6183 | 15000 | 0.0167 | 0.8303 | 0.8378 | 0.8340 | 0.9582 |
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Base model
google-bert/bert-base-uncased