tomaarsen HF staff commited on
Commit
0bed352
1 Parent(s): 548c931

Upload train.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. train.py +5 -96
train.py CHANGED
@@ -8,105 +8,12 @@ from span_marker.model_card import SpanMarkerModelCardData
8
  from huggingface_hub import upload_folder, upload_file
9
 
10
 
11
- """
12
- FEATURES = Features({"tokens": Sequence(feature=Value(dtype='string')), "ner_tags": Sequence(feature=ClassLabel(names=['O', 'B-ORG', 'I-ORG']))})
13
-
14
-
15
- def load_fewnerd():
16
- def mapper(sample):
17
- sample["ner_tags"] = [int(tag == 5) for tag in sample["ner_tags"]]
18
- sample["ner_tags"] = [2 if tag == 1 and idx > 0 and sample["ner_tags"][idx - 1] == 1 else tag for idx, tag in enumerate(sample["ner_tags"])]
19
- return sample
20
-
21
- dataset = load_dataset("DFKI-SLT/few-nerd", "supervised")
22
- dataset = dataset.map(mapper, remove_columns=["id", "fine_ner_tags"])
23
- dataset = dataset.cast(FEATURES)
24
- return dataset
25
-
26
-
27
- def load_conll():
28
- label_mapping = {3: 1, 4: 2}
29
- def mapper(sample):
30
- sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]]
31
- return sample
32
-
33
- dataset = load_dataset("conll2003")
34
- dataset = dataset.map(mapper, remove_columns=["id", "pos_tags", "chunk_tags"])
35
- dataset = dataset.cast(FEATURES)
36
- return dataset
37
-
38
-
39
- def load_ontonotes():
40
- label_mapping = {11: 1, 12: 2}
41
- def mapper(sample):
42
- sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]]
43
- return sample
44
-
45
- dataset = load_dataset("tner/ontonotes5")
46
- dataset = dataset.rename_column("tags", "ner_tags")
47
- dataset = dataset.map(mapper)
48
- dataset = dataset.cast(FEATURES)
49
- return dataset
50
-
51
-
52
- def load_multinerd():
53
- label_mapping = {5: 1, 6: 2}
54
- def mapper(sample):
55
- sample["ner_tags"] = [label_mapping.get(tag, 0) for tag in sample["ner_tags"]]
56
- return sample
57
-
58
- def lang_filter(sample):
59
- return sample["lang"] == "en"
60
-
61
- dataset = load_dataset("Babelscape/multinerd")
62
- dataset = dataset.filter(lang_filter)
63
- dataset = dataset.map(mapper, remove_columns="lang")
64
- dataset = dataset.cast(FEATURES)
65
- return dataset
66
-
67
-
68
- def preprocess_raw_dataset(raw_dataset):
69
- # Set the number of sentences without an org equal to the number of sentences with an org
70
- def has_org(sample):
71
- return bool(sum(sample["ner_tags"]))
72
-
73
- def has_no_org(sample):
74
- return not has_org(sample)
75
-
76
- dataset_org = raw_dataset.filter(has_org)
77
- dataset_no_org = raw_dataset.filter(has_no_org)
78
- dataset_no_org = dataset_no_org.select(random.sample(range(len(dataset_no_org)), k=len(dataset_org)))
79
- dataset = concatenate_datasets([dataset_org, dataset_no_org])
80
- return dataset
81
- """
82
-
83
 
84
  def main() -> None:
85
  # Load the dataset, ensure "tokens" and "ner_tags" columns, and get a list of labels
86
  labels = ["O", "B-ORG", "I-ORG"]
87
- """
88
- fewnerd_dataset = load_fewnerd()
89
- conll_dataset = load_conll()
90
- ontonotes_dataset = load_ontonotes()
91
- multinerd_dataset = load_multinerd()
92
-
93
- raw_train_dataset = concatenate_datasets([fewnerd_dataset["train"], conll_dataset["train"], ontonotes_dataset["train"], multinerd_dataset["train"]])
94
- raw_eval_dataset = concatenate_datasets([fewnerd_dataset["validation"], conll_dataset["validation"], ontonotes_dataset["validation"], multinerd_dataset["validation"]])
95
- raw_test_dataset = concatenate_datasets([fewnerd_dataset["test"], conll_dataset["test"], ontonotes_dataset["test"], multinerd_dataset["test"]])
96
-
97
- train_dataset = preprocess_raw_dataset(raw_train_dataset)
98
- eval_dataset = preprocess_raw_dataset(raw_eval_dataset)
99
- test_dataset = preprocess_raw_dataset(raw_test_dataset)
100
-
101
- dataset_dict = DatasetDict({
102
- "train": train_dataset,
103
- "validation": eval_dataset,
104
- "test": test_dataset,
105
- })
106
- dataset_dict.push_to_hub("ner-orgs", private=True)
107
- """
108
- # breakpoint()
109
- dataset = load_dataset("tomaarsen/ner-orgs")
110
 
111
  train_dataset = dataset["train"]
112
  eval_dataset = dataset["validation"]
@@ -126,8 +33,10 @@ def main() -> None:
126
  # Model card variables
127
  model_card_data=SpanMarkerModelCardData(
128
  model_id=model_id,
 
129
  encoder_id=encoder_id,
130
- dataset_name="FewNERD, CoNLL2003, OntoNotes v5, and MultiNERD",
 
131
  language=["en"],
132
  ),
133
  )
 
8
  from huggingface_hub import upload_folder, upload_file
9
 
10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
  def main() -> None:
13
  # Load the dataset, ensure "tokens" and "ner_tags" columns, and get a list of labels
14
  labels = ["O", "B-ORG", "I-ORG"]
15
+ dataset_id = "tomaarsen/ner-orgs"
16
+ dataset = load_dataset(dataset_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  train_dataset = dataset["train"]
19
  eval_dataset = dataset["validation"]
 
33
  # Model card variables
34
  model_card_data=SpanMarkerModelCardData(
35
  model_id=model_id,
36
+ dataset_id=dataset_id,
37
  encoder_id=encoder_id,
38
+ dataset_name="FewNERD, CoNLL2003, and OntoNotes v5",
39
+ license="cc-by-sa-4.0",
40
  language=["en"],
41
  ),
42
  )