State-of-the-Art NER models - Organizations
Collection
4 items
•
Updated
This is a SpanMarker model trained on the FewNERD, CoNLL2003, and OntoNotes v5 dataset that can be used for Named Entity Recognition. This SpanMarker model uses bert-base-cased as the underlying encoder.
Label | Examples |
---|---|
ORG | "Texas Chicken", "IAEA", "Church 's Chicken" |
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.7958 | 0.7936 | 0.7947 |
ORG | 0.7958 | 0.7936 | 0.7947 |
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-orgs")
# Run inference
entities = model.predict("Postponed: East Fife v Clydebank, St Johnstone v")
You can finetune this model on your own dataset.
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-orgs")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-orgs-finetuned")
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 23.5706 | 263 |
Entities per sentence | 0 | 0.7865 | 39 |
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
0.7131 | 3000 | 0.0061 | 0.7978 | 0.7830 | 0.7904 | 0.9764 |
1.4262 | 6000 | 0.0059 | 0.8170 | 0.7843 | 0.8004 | 0.9774 |
2.1393 | 9000 | 0.0061 | 0.8221 | 0.7938 | 0.8077 | 0.9772 |
2.8524 | 12000 | 0.0062 | 0.8211 | 0.8003 | 0.8106 | 0.9780 |
Carbon emissions were measured using CodeCarbon.
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Base model
google-bert/bert-base-cased