tomaarsen's picture
tomaarsen HF Staff
Add new SparseEncoder model
0d7ac66 verified
metadata
language:
  - en
license: apache-2.0
tags:
  - sentence-transformers
  - sparse-encoder
  - sparse
  - csr
  - generated_from_trainer
  - dataset_size:99000
  - loss:CSRLoss
  - loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
  - text: >-
      Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi
      Arabia continue to take somewhat differing stances on regional conflicts
      such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports
      the Southern Movement, which has fought against Saudi-backed forces, and
      the Syrian Civil War, where the UAE has disagreed with Saudi support for
      Islamist movements.[4]
  - text: >-
      Economy of New Zealand New Zealand's diverse market economy has a sizable
      service sector, accounting for 63% of all GDP activity in 2013.[17] Large
      scale manufacturing industries include aluminium production, food
      processing, metal fabrication, wood and paper products. Mining,
      manufacturing, electricity, gas, water, and waste services accounted for
      16.5% of GDP in 2013.[17] The primary sector continues to dominate New
      Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
  - text: >-
      who was the first president of indian science congress meeting held in
      kolkata in 1914
  - text: >-
      Get Over It (Eagles song) "Get Over It" is a song by the Eagles released
      as a single after a fourteen-year breakup. It was also the first song
      written by bandmates Don Henley and Glenn Frey when the band reunited.
      "Get Over It" was played live for the first time during their Hell Freezes
      Over tour in 1994. It returned the band to the U.S. Top 40 after a
      fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart.
      It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song
      was not played live by the Eagles after the "Hell Freezes Over" tour in
      1994. It remains the group's last Top 40 hit in the U.S.
  - text: >-
      Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion
      who is considered by Christians to be one of the first Gentiles to convert
      to the faith, as related in Acts of the Apostles.
datasets:
  - sentence-transformers/natural-questions
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
  - query_active_dims
  - query_sparsity_ratio
  - corpus_active_dims
  - corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 40.42372184623099
  energy_consumed: 0.10399669115731586
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.26
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: Sparse CSR model trained on Natural Questions
    results:
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 4
          type: nq_eval_4
        metrics:
          - type: cosine_accuracy@1
            value: 0.31
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.473
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.542
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.646
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.31
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15766666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.1084
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.06459999999999999
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.31
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.473
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.542
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.646
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.4684067906814767
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4128293650793652
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4224240587788511
            name: Cosine Map@100
          - type: query_active_dims
            value: 4
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9990234375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 4
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9990234375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 8
          type: nq_eval_8
        metrics:
          - type: cosine_accuracy@1
            value: 0.506
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.675
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.742
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.819
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.506
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.225
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.14839999999999998
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0819
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.506
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.675
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.742
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.819
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.6589725910920494
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.6082432539682538
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.6139515995984552
            name: Cosine Map@100
          - type: query_active_dims
            value: 8
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.998046875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 8
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.998046875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 16
          type: nq_eval_16
        metrics:
          - type: cosine_accuracy@1
            value: 0.696
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.853
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.891
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.921
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.696
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.2843333333333333
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.17820000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09210000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.696
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.853
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.891
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.921
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8130203853693561
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.7777392857142861
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.78096773429733
            name: Cosine Map@100
          - type: query_active_dims
            value: 16
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.99609375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 16
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.99609375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 32
          type: nq_eval_32
        metrics:
          - type: cosine_accuracy@1
            value: 0.796
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.932
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.957
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.975
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.796
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.31066666666666665
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19140000000000004
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09750000000000002
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.796
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.932
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.957
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.975
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.8949430953203434
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.8682769841269843
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.8695035944590409
            name: Cosine Map@100
          - type: query_active_dims
            value: 32
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9921875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 32
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9921875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 64
          type: nq_eval_64
        metrics:
          - type: cosine_accuracy@1
            value: 0.9
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.968
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.979
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.988
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.9
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3226666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19580000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09880000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.9
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.968
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.979
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.988
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9474833444977032
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9340369047619049
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9345243389721143
            name: Cosine Map@100
          - type: query_active_dims
            value: 64
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.984375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 64
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.984375
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 128
          type: nq_eval_128
        metrics:
          - type: cosine_accuracy@1
            value: 0.922
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.982
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.984
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.989
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.922
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.32733333333333325
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19680000000000006
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.0989
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.922
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.982
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.984
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.989
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9608137526283965
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9512484126984128
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.951728611125746
            name: Cosine Map@100
          - type: query_active_dims
            value: 128
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.96875
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 128
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.96875
            name: Corpus Sparsity Ratio
      - task:
          type: sparse-information-retrieval
          name: Sparse Information Retrieval
        dataset:
          name: nq eval 256
          type: nq_eval_256
        metrics:
          - type: cosine_accuracy@1
            value: 0.938
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.986
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.988
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.991
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.938
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.3286666666666666
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.19760000000000003
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.09910000000000001
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.938
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.986
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.988
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.991
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.9692313969692871
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.9617595238095238
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.9621392315329386
            name: Cosine Map@100
          - type: query_active_dims
            value: 256
            name: Query Active Dims
          - type: query_sparsity_ratio
            value: 0.9375
            name: Query Sparsity Ratio
          - type: corpus_active_dims
            value: 256
            name: Corpus Active Dims
          - type: corpus_sparsity_ratio
            value: 0.9375
            name: Corpus Sparsity Ratio

Sparse CSR model trained on Natural Questions

This is a CSR Sparse Encoder model finetuned from mixedbread-ai/mxbai-embed-large-v1 on the natural-questions dataset using the sentence-transformers library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: CSR Sparse Encoder
  • Base model: mixedbread-ai/mxbai-embed-large-v1
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 4096 dimensions (trained with 256 maximum active dimensions)
  • Similarity Function: Cosine Similarity
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-2")
# Run inference
queries = [
    "who is cornelius in the book of acts",
]
documents = [
    'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
    "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
    'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 4096] [3, 4096]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.6368, 0.1692, 0.1661]])

Evaluation

Metrics

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.31
cosine_accuracy@3 0.473
cosine_accuracy@5 0.542
cosine_accuracy@10 0.646
cosine_precision@1 0.31
cosine_precision@3 0.1577
cosine_precision@5 0.1084
cosine_precision@10 0.0646
cosine_recall@1 0.31
cosine_recall@3 0.473
cosine_recall@5 0.542
cosine_recall@10 0.646
cosine_ndcg@10 0.4684
cosine_mrr@10 0.4128
cosine_map@100 0.4224
query_active_dims 4.0
query_sparsity_ratio 0.999
corpus_active_dims 4.0
corpus_sparsity_ratio 0.999

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.506
cosine_accuracy@3 0.675
cosine_accuracy@5 0.742
cosine_accuracy@10 0.819
cosine_precision@1 0.506
cosine_precision@3 0.225
cosine_precision@5 0.1484
cosine_precision@10 0.0819
cosine_recall@1 0.506
cosine_recall@3 0.675
cosine_recall@5 0.742
cosine_recall@10 0.819
cosine_ndcg@10 0.659
cosine_mrr@10 0.6082
cosine_map@100 0.614
query_active_dims 8.0
query_sparsity_ratio 0.998
corpus_active_dims 8.0
corpus_sparsity_ratio 0.998

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.696
cosine_accuracy@3 0.853
cosine_accuracy@5 0.891
cosine_accuracy@10 0.921
cosine_precision@1 0.696
cosine_precision@3 0.2843
cosine_precision@5 0.1782
cosine_precision@10 0.0921
cosine_recall@1 0.696
cosine_recall@3 0.853
cosine_recall@5 0.891
cosine_recall@10 0.921
cosine_ndcg@10 0.813
cosine_mrr@10 0.7777
cosine_map@100 0.781
query_active_dims 16.0
query_sparsity_ratio 0.9961
corpus_active_dims 16.0
corpus_sparsity_ratio 0.9961

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.796
cosine_accuracy@3 0.932
cosine_accuracy@5 0.957
cosine_accuracy@10 0.975
cosine_precision@1 0.796
cosine_precision@3 0.3107
cosine_precision@5 0.1914
cosine_precision@10 0.0975
cosine_recall@1 0.796
cosine_recall@3 0.932
cosine_recall@5 0.957
cosine_recall@10 0.975
cosine_ndcg@10 0.8949
cosine_mrr@10 0.8683
cosine_map@100 0.8695
query_active_dims 32.0
query_sparsity_ratio 0.9922
corpus_active_dims 32.0
corpus_sparsity_ratio 0.9922

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.9
cosine_accuracy@3 0.968
cosine_accuracy@5 0.979
cosine_accuracy@10 0.988
cosine_precision@1 0.9
cosine_precision@3 0.3227
cosine_precision@5 0.1958
cosine_precision@10 0.0988
cosine_recall@1 0.9
cosine_recall@3 0.968
cosine_recall@5 0.979
cosine_recall@10 0.988
cosine_ndcg@10 0.9475
cosine_mrr@10 0.934
cosine_map@100 0.9345
query_active_dims 64.0
query_sparsity_ratio 0.9844
corpus_active_dims 64.0
corpus_sparsity_ratio 0.9844

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.922
cosine_accuracy@3 0.982
cosine_accuracy@5 0.984
cosine_accuracy@10 0.989
cosine_precision@1 0.922
cosine_precision@3 0.3273
cosine_precision@5 0.1968
cosine_precision@10 0.0989
cosine_recall@1 0.922
cosine_recall@3 0.982
cosine_recall@5 0.984
cosine_recall@10 0.989
cosine_ndcg@10 0.9608
cosine_mrr@10 0.9512
cosine_map@100 0.9517
query_active_dims 128.0
query_sparsity_ratio 0.9688
corpus_active_dims 128.0
corpus_sparsity_ratio 0.9688

Sparse Information Retrieval

Metric Value
cosine_accuracy@1 0.938
cosine_accuracy@3 0.986
cosine_accuracy@5 0.988
cosine_accuracy@10 0.991
cosine_precision@1 0.938
cosine_precision@3 0.3287
cosine_precision@5 0.1976
cosine_precision@10 0.0991
cosine_recall@1 0.938
cosine_recall@3 0.986
cosine_recall@5 0.988
cosine_recall@10 0.991
cosine_ndcg@10 0.9692
cosine_mrr@10 0.9618
cosine_map@100 0.9621
query_active_dims 256.0
query_sparsity_ratio 0.9375
corpus_active_dims 256.0
corpus_sparsity_ratio 0.9375

Training Details

Training Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 99,000 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.71 tokens
    • max: 26 tokens
    • min: 4 tokens
    • mean: 131.81 tokens
    • max: 450 tokens
  • Samples:
    query answer
    who played the father in papa don't preach Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.
    where was the location of the battle of hastings Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.
    how many puppies can a dog give birth to Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Evaluation Dataset

natural-questions

  • Dataset: natural-questions at f9e894e
  • Size: 1,000 evaluation samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 10 tokens
    • mean: 11.69 tokens
    • max: 23 tokens
    • min: 15 tokens
    • mean: 134.01 tokens
    • max: 512 tokens
  • Samples:
    query answer
    where is the tiber river located in italy Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.
    what kind of car does jay gatsby drive Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.
    who sings if i can dream about you I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]
  • Loss: CSRLoss with these parameters:
    {
        "beta": 0.1,
        "gamma": 0.1,
        "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • learning_rate: 4e-05
  • num_train_epochs: 1
  • bf16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 4e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss Validation Loss nq_eval_4_cosine_ndcg@10 nq_eval_8_cosine_ndcg@10 nq_eval_16_cosine_ndcg@10 nq_eval_32_cosine_ndcg@10 nq_eval_64_cosine_ndcg@10 nq_eval_128_cosine_ndcg@10 nq_eval_256_cosine_ndcg@10
-1 -1 - - 0.2499 0.4212 0.6606 0.8510 0.9370 0.9650 0.9709
0.0646 100 0.3173 - - - - - - - -
0.1293 200 0.2771 - - - - - - - -
0.1939 300 0.2649 0.2495 0.3804 0.6027 0.7670 0.8868 0.9370 0.9592 0.9683
0.2586 400 0.2575 - - - - - - - -
0.3232 500 0.2527 - - - - - - - -
0.3878 600 0.2491 0.2361 0.4373 0.6326 0.7971 0.8939 0.9403 0.9563 0.9664
0.4525 700 0.2462 - - - - - - - -
0.5171 800 0.2428 - - - - - - - -
0.5818 900 0.2412 0.2298 0.4553 0.6506 0.8003 0.8943 0.9438 0.9591 0.9683
0.6464 1000 0.24 - - - - - - - -
0.7111 1100 0.238 - - - - - - - -
0.7757 1200 0.2375 0.2264 0.4654 0.6586 0.8040 0.9000 0.9468 0.9617 0.9686
0.8403 1300 0.2372 - - - - - - - -
0.9050 1400 0.236 - - - - - - - -
0.9696 1500 0.2362 0.2253 0.4697 0.6600 0.8119 0.8938 0.9449 0.9609 0.9705
-1 -1 - - 0.4684 0.6590 0.8130 0.8949 0.9475 0.9608 0.9692

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.104 kWh
  • Carbon Emitted: 0.040 kg of CO2
  • Hours Used: 0.26 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.52.4
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.5.1
  • Datasets: 2.21.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CSRLoss

@misc{wen2025matryoshkarevisitingsparsecoding,
      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
      year={2025},
      eprint={2503.01776},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2503.01776},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}