File size: 91,731 Bytes
f75f9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
---

language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:3011496
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- source_sentence: how much is a car title transfer in minnesota?
  sentences:
  - This complex is a larger molecule than the original crystal violet stain and iodine
    and is insoluble in water. ... Conversely, the the outer membrane of Gram negative
    bacteria is degraded and the thinner peptidoglycan layer of Gram negative cells
    is unable to retain the crystal violet-iodine complex and the color is lost.
  - Get insurance on the car and provide proof. Bring this information (including
    the title) to the Minnesota DVS office, as well as $10 for the filing fee and
    $7.25 for the titling fee. There is also a $10 transfer tax, as well as a 6.5%
    sales tax on the purchase price.
  - 'One of the risks of DNP is that it accelerates the metabolism to a dangerously

    fast level. Our metabolic system operates at the rate it does for a reason – it

    is safe. Speeding up the metabolism may help burn off fat, but it can also trigger

    a number of potentially dangerous side effects, such as: fever.'
- source_sentence: what is the difference between 18 and 20 inch tires?
  sentences:
  - The only real difference is a 20" rim would be more likely to be damaged, as you

    pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the
    availability of tires will likely be much more limited for the larger rim. ...
    Tire selection is better for 18" wheels than 20" wheels.
  - '[''Open your Outlook app on your mobile device and click on the Settings gear

    icon.'', ''Under Settings, click on the Signature option.'', ''Enter either a

    generic signature that could be used for all email accounts tied to your Outlook

    app, or a specific signature, Per Account Signature, for each email account.'']'
  - The average normal body temperature is around 98.6 degrees Fahrenheit, or 37 degrees
    Celsius. If your body temperature drops to just a few degrees lower than this,
    your blood vessels in your hands, feet, arms, and legs start to get narrower.
- source_sentence: whom the bell tolls meaning?
  sentences:
  - 'Answer: Humans are depicted in Hindu art often in sensuous and erotic postures.'
  - The phrase "For whom the bell tolls" refers to the church bells that are rung
    when a person dies. Hence, the author is suggesting that we should not be curious
    as to for whom the church bell is tolling for. It is for all of us.
  - '[''Automatically.'', ''When connected to car Bluetooth and,'', ''Manually.'']'
- source_sentence: how long before chlamydia symptoms appear?
  sentences:
  - Most people who have chlamydia don't notice any symptoms. If you do get symptoms,
    these usually appear between 1 and 3 weeks after having unprotected sex with an
    infected person. For some people they don't develop until many months later. Sometimes
    the symptoms can disappear after a few days.
  - '[''Open the My Verizon app . ... '', ''Tap the Menu icon. ... '', ''Tap Manage

    device for the appropriate mobile number. ... '', ''Tap Transfer content between

    phones. ... '', ''Tap Start Transfer.'']'
  - 'Psychiatrist vs Psychologist A psychiatrist is classed as a medical doctor, they

    include a physical examination of symptoms in their assessment and are able to

    prescribe medicine: a psychologist is also a doctor by virtue of their PHD level

    qualification, but is not medically trained and cannot prescribe.'
- source_sentence: are you human korean novela?
  sentences:
  - Many cysts heal on their own, which means that conservative treatments like rest
    and anti-inflammatory painkillers can often be enough to get rid of them. However,
    in some cases, routine drainage of the sac may be necessary to reduce symptoms.
  - A relative of European pear varieties like Bartlett and Anjou, the Asian pear
    is great used in recipes or simply eaten out of hand. It retains a crispness that
    works well in slaws and salads, and it holds its shape better than European pears
    when baked and cooked.
  - 'Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?)

    is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon.

    It aired on KBS2''s Mondays and Tuesdays at 22:00 (KST) time slot, from June 4

    to August 7, 2018.'
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- row_non_zero_mean_query
- row_sparsity_mean_query
- row_non_zero_mean_corpus
- row_sparsity_mean_corpus
co2_eq_emissions:
  emissions: 467.36155743833086
  energy_consumed: 1.2023646840981803
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 3.125
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO 128
      type: NanoMSMARCO_128
    metrics:
    - type: dot_accuracy@1
      value: 0.42
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.64
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.68
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.8
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.42
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.21333333333333332
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.136
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.42
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.64
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.68
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6079185617079585
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5469047619047619
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5546949863343481
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 128.0
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.96875
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 128.0
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.96875
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus 128
      type: NanoNFCorpus_128
    metrics:
    - type: dot_accuracy@1
      value: 0.28
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.46
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.66
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.28
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2866666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.28
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.24600000000000002
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.010077778443246685
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.04965300165842144
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.07680443441830657
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.10785346110615711
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.27112973349418856
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3951904761904761
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.10882673834779542
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 128.0
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.96875
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 128.0
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.96875
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ 128
      type: NanoNQ_128
    metrics:
    - type: dot_accuracy@1
      value: 0.46
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.62
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.7
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.82
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.46
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.20666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08199999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.44
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.58
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.65
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.76
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5976862103963738
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5692222222222223
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5513454286143362
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 128.0
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.96875
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 128.0
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.96875
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean 128
      type: NanoBEIR_mean_128
    metrics:
    - type: dot_accuracy@1
      value: 0.38666666666666666
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5733333333333334
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6533333333333333
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7599999999999999
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.38666666666666666
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.23555555555555555
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.18533333333333335
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.136
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.2900259261477489
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.4232176672194738
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.4689348114727689
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5559511537020524
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.49224483519950696
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5037724867724868
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4049557177654933
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 128.0
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.96875
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 128.0
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.96875
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO 256
      type: NanoMSMARCO_256
    metrics:
    - type: dot_accuracy@1
      value: 0.42
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.7
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.76
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.42
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.15200000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08399999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.42
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.76
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.84
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6326016391887893
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.566111111111111
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5727341193854673
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 256.0
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9375
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 256.0
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9375
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus 256
      type: NanoNFCorpus_256
    metrics:
    - type: dot_accuracy@1
      value: 0.32
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.56
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.62
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.32
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.31999999999999995
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.316
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.262
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.030392237560226815
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.0717373009745601
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.09312218308574575
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.133341363492939
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.30709320262394824
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.45252380952380944
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.14302697817666413
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 256.0
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9375
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 256.0
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9375
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ 256
      type: NanoNQ_256
    metrics:
    - type: dot_accuracy@1
      value: 0.42
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.64
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.68
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.84
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.42
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.22
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.088
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.4
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.6
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.63
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.79
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.594269599796927
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5505952380952379
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5330295920949546
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 256.0
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9375
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 256.0
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9375
      name: Row Sparsity Mean Corpus
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean 256
      type: NanoBEIR_mean_256
    metrics:
    - type: dot_accuracy@1
      value: 0.38666666666666666
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6333333333333333
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6866666666666666
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7933333333333333
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.38666666666666666
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2577777777777777
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.2026666666666667
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.14466666666666664
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.28346407918674227
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.45724576699152
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.4943740610285819
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5877804544976463
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5113214805365548
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5230767195767194
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.41626356321902863
      name: Dot Map@100
    - type: row_non_zero_mean_query
      value: 256.0
      name: Row Non Zero Mean Query
    - type: row_sparsity_mean_query
      value: 0.9375
      name: Row Sparsity Mean Query
    - type: row_non_zero_mean_corpus
      value: 256.0
      name: Row Non Zero Mean Corpus
    - type: row_sparsity_mean_corpus
      value: 0.9375
      name: Row Sparsity Mean Corpus
---


# Sparse CSR model trained on Natural Questions

This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

## Model Details

### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```

SparseEncoder(

  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 

  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})

  (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})

)

```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash

pip install -U sentence-transformers

```

Then you can load this model and run inference.
```python

from sentence_transformers import SparseEncoder



# Download from the 🤗 Hub

model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-gooaq-2e-4")

# Run inference

sentences = [

    'are you human korean novela?',

    "Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?) is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon. It aired on KBS2's Mondays and Tuesdays at 22:00 (KST) time slot, from June 4 to August 7, 2018.",

    'A relative of European pear varieties like Bartlett and Anjou, the Asian pear is great used in recipes or simply eaten out of hand. It retains a crispness that works well in slaws and salads, and it holds its shape better than European pears when baked and cooked.',

]

embeddings = model.encode(sentences)

print(embeddings.shape)

# (3, 4096)



# Get the similarity scores for the embeddings

similarities = model.similarity(embeddings, embeddings)

print(similarities.shape)

# [3, 3]

```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO_128`, `NanoNFCorpus_128` and `NanoNQ_128`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
  ```json

  {

      "max_active_dims": 128

  }

  ```

| Metric                   | NanoMSMARCO_128 | NanoNFCorpus_128 | NanoNQ_128 |

|:-------------------------|:----------------|:-----------------|:-----------|

| dot_accuracy@1           | 0.42            | 0.28             | 0.46       |
| dot_accuracy@3           | 0.64            | 0.46             | 0.62       |

| dot_accuracy@5           | 0.68            | 0.58             | 0.7        |
| dot_accuracy@10          | 0.8             | 0.66             | 0.82       |

| dot_precision@1          | 0.42            | 0.28             | 0.46       |
| dot_precision@3          | 0.2133          | 0.2867           | 0.2067     |

| dot_precision@5          | 0.136           | 0.28             | 0.14       |
| dot_precision@10         | 0.08            | 0.246            | 0.082      |

| dot_recall@1             | 0.42            | 0.0101           | 0.44       |
| dot_recall@3             | 0.64            | 0.0497           | 0.58       |

| dot_recall@5             | 0.68            | 0.0768           | 0.65       |
| dot_recall@10            | 0.8             | 0.1079           | 0.76       |

| **dot_ndcg@10**          | **0.6079**      | **0.2711**       | **0.5977** |

| dot_mrr@10               | 0.5469          | 0.3952           | 0.5692     |
| dot_map@100              | 0.5547          | 0.1088           | 0.5513     |

| row_non_zero_mean_query  | 128.0           | 128.0            | 128.0      |

| row_sparsity_mean_query  | 0.9688          | 0.9688           | 0.9688     |
| row_non_zero_mean_corpus | 128.0           | 128.0            | 128.0      |
| row_sparsity_mean_corpus | 0.9688          | 0.9688           | 0.9688     |



#### Sparse Nano BEIR



* Dataset: `NanoBEIR_mean_128`

* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:

  ```json

  {

      "dataset_names": [
          "msmarco",

          "nfcorpus",

          "nq"

      ],

      "max_active_dims": 128

  }

  ```


| Metric                   | Value      |
|:-------------------------|:-----------|
| dot_accuracy@1           | 0.3867     |

| dot_accuracy@3           | 0.5733     |
| dot_accuracy@5           | 0.6533     |

| dot_accuracy@10          | 0.76       |
| dot_precision@1          | 0.3867     |

| dot_precision@3          | 0.2356     |
| dot_precision@5          | 0.1853     |

| dot_precision@10         | 0.136      |
| dot_recall@1             | 0.29       |

| dot_recall@3             | 0.4232     |
| dot_recall@5             | 0.4689     |

| dot_recall@10            | 0.556      |
| **dot_ndcg@10**          | **0.4922** |

| dot_mrr@10               | 0.5038     |

| dot_map@100              | 0.405      |

| row_non_zero_mean_query  | 128.0      |

| row_sparsity_mean_query  | 0.9688     |

| row_non_zero_mean_corpus | 128.0      |

| row_sparsity_mean_corpus | 0.9688     |



#### Sparse Information Retrieval



* Datasets: `NanoMSMARCO_256`, `NanoNFCorpus_256` and `NanoNQ_256`

* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:

  ```json

  {

      "max_active_dims": 256

  }

  ```



| Metric                   | NanoMSMARCO_256 | NanoNFCorpus_256 | NanoNQ_256 |

|:-------------------------|:----------------|:-----------------|:-----------|

| dot_accuracy@1           | 0.42            | 0.32             | 0.42       |

| dot_accuracy@3           | 0.7             | 0.56             | 0.64       |

| dot_accuracy@5           | 0.76            | 0.62             | 0.68       |

| dot_accuracy@10          | 0.84            | 0.7              | 0.84       |

| dot_precision@1          | 0.42            | 0.32             | 0.42       |

| dot_precision@3          | 0.2333          | 0.32             | 0.22       |

| dot_precision@5          | 0.152           | 0.316            | 0.14       |

| dot_precision@10         | 0.084           | 0.262            | 0.088      |

| dot_recall@1             | 0.42            | 0.0304           | 0.4        |

| dot_recall@3             | 0.7             | 0.0717           | 0.6        |

| dot_recall@5             | 0.76            | 0.0931           | 0.63       |

| dot_recall@10            | 0.84            | 0.1333           | 0.79       |

| **dot_ndcg@10**          | **0.6326**      | **0.3071**       | **0.5943** |
| dot_mrr@10               | 0.5661          | 0.4525           | 0.5506     |

| dot_map@100              | 0.5727          | 0.143            | 0.533      |
| row_non_zero_mean_query  | 256.0           | 256.0            | 256.0      |
| row_sparsity_mean_query  | 0.9375          | 0.9375           | 0.9375     |

| row_non_zero_mean_corpus | 256.0           | 256.0            | 256.0      |

| row_sparsity_mean_corpus | 0.9375          | 0.9375           | 0.9375     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean_256`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json

  {

      "dataset_names": [

          "msmarco",

          "nfcorpus",

          "nq"

      ],

      "max_active_dims": 256

  }

  ```

| Metric                   | Value      |
|:-------------------------|:-----------|
| dot_accuracy@1           | 0.3867     |

| dot_accuracy@3           | 0.6333     |
| dot_accuracy@5           | 0.6867     |

| dot_accuracy@10          | 0.7933     |
| dot_precision@1          | 0.3867     |

| dot_precision@3          | 0.2578     |
| dot_precision@5          | 0.2027     |

| dot_precision@10         | 0.1447     |
| dot_recall@1             | 0.2835     |

| dot_recall@3             | 0.4572     |
| dot_recall@5             | 0.4944     |

| dot_recall@10            | 0.5878     |
| **dot_ndcg@10**          | **0.5113** |

| dot_mrr@10               | 0.5231     |

| dot_map@100              | 0.4163     |

| row_non_zero_mean_query  | 256.0      |

| row_sparsity_mean_query  | 0.9375     |

| row_non_zero_mean_corpus | 256.0      |

| row_sparsity_mean_corpus | 0.9375     |



<!--

## Bias, Risks and Limitations



*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*

-->



<!--

### Recommendations



*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*

-->



## Training Details



### Training Dataset



#### gooaq



* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 3,011,496 training samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.87 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.09 tokens</li><li>max: 201 tokens</li></ul> |

* Samples:

  | question                                                                     | answer                                                                                                                                                                                                                                                                                                                           |

  |:-----------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>what is the difference between clay and mud mask?</code>               | <code>The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.</code>                                                                                          |

  | <code>myki how much on card?</code>                                          | <code>A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.</code>                                                                                                                                        |

  | <code>how to find out if someone blocked your phone number on iphone?</code> | <code>If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.</code> |

* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:

  ```json

  {

      "beta": 0.1,

      "gamma": 1.0,

      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"

  }

  ```



### Evaluation Dataset



#### gooaq



* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)

* Size: 1,000 evaluation samples

* Columns: <code>question</code> and <code>answer</code>

* Approximate statistics based on the first 1000 samples:

  |         | question                                                                          | answer                                                                              |

  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|

  | type    | string                                                                            | string                                                                              |

  | details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |

* Samples:

  | question                                                                     | answer                                                                                                                                                                                                                                                                                                                                     |

  |:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

  | <code>how do i program my directv remote with my tv?</code>                  | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code>                                                                                               |

  | <code>are rodrigues fruit bats nocturnal?</code>                             | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code>                                                                                                  |

  | <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |

* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:

  ```json

  {

      "beta": 0.1,

      "gamma": 1.0,

      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"

  }

  ```



### Training Hyperparameters

#### Non-Default Hyperparameters



- `eval_strategy`: steps

- `per_device_train_batch_size`: 64

- `per_device_eval_batch_size`: 64

- `learning_rate`: 0.0002

- `num_train_epochs`: 1

- `warmup_ratio`: 0.1

- `bf16`: True

- `load_best_model_at_end`: True

- `batch_sampler`: no_duplicates



#### All Hyperparameters

<details><summary>Click to expand</summary>



- `overwrite_output_dir`: False

- `do_predict`: False

- `eval_strategy`: steps

- `prediction_loss_only`: True

- `per_device_train_batch_size`: 64

- `per_device_eval_batch_size`: 64

- `per_gpu_train_batch_size`: None

- `per_gpu_eval_batch_size`: None

- `gradient_accumulation_steps`: 1

- `eval_accumulation_steps`: None

- `torch_empty_cache_steps`: None

- `learning_rate`: 0.0002

- `weight_decay`: 0.0

- `adam_beta1`: 0.9

- `adam_beta2`: 0.999

- `adam_epsilon`: 1e-08

- `max_grad_norm`: 1.0

- `num_train_epochs`: 1

- `max_steps`: -1

- `lr_scheduler_type`: linear

- `lr_scheduler_kwargs`: {}

- `warmup_ratio`: 0.1

- `warmup_steps`: 0

- `log_level`: passive

- `log_level_replica`: warning

- `log_on_each_node`: True

- `logging_nan_inf_filter`: True

- `save_safetensors`: True

- `save_on_each_node`: False

- `save_only_model`: False

- `restore_callback_states_from_checkpoint`: False

- `no_cuda`: False

- `use_cpu`: False

- `use_mps_device`: False

- `seed`: 42

- `data_seed`: None

- `jit_mode_eval`: False

- `use_ipex`: False

- `bf16`: True

- `fp16`: False

- `fp16_opt_level`: O1

- `half_precision_backend`: auto

- `bf16_full_eval`: False

- `fp16_full_eval`: False

- `tf32`: None

- `local_rank`: 0

- `ddp_backend`: None

- `tpu_num_cores`: None

- `tpu_metrics_debug`: False

- `debug`: []

- `dataloader_drop_last`: False

- `dataloader_num_workers`: 0

- `dataloader_prefetch_factor`: None

- `past_index`: -1

- `disable_tqdm`: False

- `remove_unused_columns`: True

- `label_names`: None

- `load_best_model_at_end`: True

- `ignore_data_skip`: False

- `fsdp`: []

- `fsdp_min_num_params`: 0

- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}

- `fsdp_transformer_layer_cls_to_wrap`: None

- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}

- `deepspeed`: None

- `label_smoothing_factor`: 0.0

- `optim`: adamw_torch

- `optim_args`: None

- `adafactor`: False

- `group_by_length`: False

- `length_column_name`: length

- `ddp_find_unused_parameters`: None

- `ddp_bucket_cap_mb`: None

- `ddp_broadcast_buffers`: False

- `dataloader_pin_memory`: True

- `dataloader_persistent_workers`: False

- `skip_memory_metrics`: True

- `use_legacy_prediction_loop`: False

- `push_to_hub`: False

- `resume_from_checkpoint`: None

- `hub_model_id`: None

- `hub_strategy`: every_save

- `hub_private_repo`: None

- `hub_always_push`: False

- `gradient_checkpointing`: False

- `gradient_checkpointing_kwargs`: None

- `include_inputs_for_metrics`: False

- `include_for_metrics`: []

- `eval_do_concat_batches`: True

- `fp16_backend`: auto

- `push_to_hub_model_id`: None

- `push_to_hub_organization`: None

- `mp_parameters`: 

- `auto_find_batch_size`: False

- `full_determinism`: False

- `torchdynamo`: None

- `ray_scope`: last

- `ddp_timeout`: 1800

- `torch_compile`: False

- `torch_compile_backend`: None

- `torch_compile_mode`: None

- `dispatch_batches`: None

- `split_batches`: None

- `include_tokens_per_second`: False

- `include_num_input_tokens_seen`: False

- `neftune_noise_alpha`: None

- `optim_target_modules`: None

- `batch_eval_metrics`: False

- `eval_on_start`: False

- `use_liger_kernel`: False

- `eval_use_gather_object`: False

- `average_tokens_across_devices`: False

- `prompts`: None

- `batch_sampler`: no_duplicates

- `multi_dataset_batch_sampler`: proportional



</details>



### Training Logs

<details><summary>Click to expand</summary>



| Epoch      | Step      | Training Loss | Validation Loss | NanoMSMARCO_128_dot_ndcg@10 | NanoNFCorpus_128_dot_ndcg@10 | NanoNQ_128_dot_ndcg@10 | NanoBEIR_mean_128_dot_ndcg@10 | NanoMSMARCO_256_dot_ndcg@10 | NanoNFCorpus_256_dot_ndcg@10 | NanoNQ_256_dot_ndcg@10 | NanoBEIR_mean_256_dot_ndcg@10 |

|:----------:|:---------:|:-------------:|:---------------:|:---------------------------:|:----------------------------:|:----------------------:|:-----------------------------:|:---------------------------:|:----------------------------:|:----------------------:|:-----------------------------:|

| -1         | -1        | -             | -               | 0.6175                      | 0.2875                       | 0.5432                 | 0.4827                        | 0.6158                      | 0.3234                       | 0.5929                 | 0.5107                        |

| 0.0064     | 300       | 0.3621        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0128     | 600       | 0.3319        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0191     | 900       | 0.3212        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0255     | 1200      | 0.3154        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0319     | 1500      | 0.3129        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0383     | 1800      | 0.309         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0446     | 2100      | 0.317         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0510     | 2400      | 0.2997        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0574     | 2700      | 0.3409        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0638     | 3000      | 0.3251        | 0.3136          | 0.6049                      | 0.2393                       | 0.5583                 | 0.4675                        | 0.5950                      | 0.2559                       | 0.5555                 | 0.4688                        |

| 0.0701     | 3300      | 0.3291        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0765     | 3600      | 0.3366        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0829     | 3900      | 0.3286        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0893     | 4200      | 0.3264        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.0956     | 4500      | 0.3413        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1020     | 4800      | 0.3352        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1084     | 5100      | 0.3323        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1148     | 5400      | 0.3308        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1211     | 5700      | 0.3127        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1275     | 6000      | 0.3224        | 0.2949          | 0.5445                      | 0.2155                       | 0.5394                 | 0.4331                        | 0.5911                      | 0.2340                       | 0.5365                 | 0.4539                        |

| 0.1339     | 6300      | 0.3216        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1403     | 6600      | 0.3202        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1466     | 6900      | 0.3296        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1530     | 7200      | 0.3171        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1594     | 7500      | 0.3141        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1658     | 7800      | 0.3202        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1721     | 8100      | 0.3088        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1785     | 8400      | 0.304         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1849     | 8700      | 0.3105        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.1913     | 9000      | 0.307         | 0.2849          | 0.6038                      | 0.2258                       | 0.5471                 | 0.4589                        | 0.6241                      | 0.2449                       | 0.5498                 | 0.4730                        |

| 0.1976     | 9300      | 0.3043        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2040     | 9600      | 0.3035        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2104     | 9900      | 0.3069        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2168     | 10200     | 0.3174        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2231     | 10500     | 0.3111        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2295     | 10800     | 0.295         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2359     | 11100     | 0.2892        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2423     | 11400     | 0.3012        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2486     | 11700     | 0.3061        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2550     | 12000     | 0.2863        | 0.2631          | 0.6190                      | 0.2720                       | 0.5379                 | 0.4763                        | 0.6056                      | 0.2898                       | 0.5419                 | 0.4791                        |

| 0.2614     | 12300     | 0.3008        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2678     | 12600     | 0.2849        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2741     | 12900     | 0.2876        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2805     | 13200     | 0.2963        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2869     | 13500     | 0.2926        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2933     | 13800     | 0.2855        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.2996     | 14100     | 0.2868        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3060     | 14400     | 0.294         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3124     | 14700     | 0.3008        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3188     | 15000     | 0.293         | 0.2745          | 0.5538                      | 0.2847                       | 0.5422                 | 0.4602                        | 0.5615                      | 0.2976                       | 0.5588                 | 0.4726                        |

| 0.3252     | 15300     | 0.2776        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3315     | 15600     | 0.2906        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3379     | 15900     | 0.2874        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3443     | 16200     | 0.2834        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3507     | 16500     | 0.2718        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3570     | 16800     | 0.2834        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3634     | 17100     | 0.2833        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3698     | 17400     | 0.281         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3762     | 17700     | 0.2922        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3825     | 18000     | 0.279         | 0.2623          | 0.5851                      | 0.2696                       | 0.5097                 | 0.4548                        | 0.5849                      | 0.2776                       | 0.5570                 | 0.4732                        |

| 0.3889     | 18300     | 0.2894        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.3953     | 18600     | 0.283         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4017     | 18900     | 0.2824        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4080     | 19200     | 0.2758        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4144     | 19500     | 0.2893        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4208     | 19800     | 0.278         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4272     | 20100     | 0.2814        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4335     | 20400     | 0.278         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4399     | 20700     | 0.2783        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4463     | 21000     | 0.2803        | 0.2510          | 0.5880                      | 0.2664                       | 0.5664                 | 0.4736                        | 0.6115                      | 0.2734                       | 0.5465                 | 0.4772                        |

| 0.4527     | 21300     | 0.2668        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4590     | 21600     | 0.2828        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4654     | 21900     | 0.2815        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4718     | 22200     | 0.2778        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4782     | 22500     | 0.271         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4845     | 22800     | 0.2696        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4909     | 23100     | 0.2698        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.4973     | 23400     | 0.2768        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5037     | 23700     | 0.2626        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5100     | 24000     | 0.2611        | 0.2414          | 0.6078                      | 0.2635                       | 0.5668                 | 0.4794                        | 0.6231                      | 0.2942                       | 0.5944                 | 0.5039                        |

| 0.5164     | 24300     | 0.2736        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5228     | 24600     | 0.2695        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5292     | 24900     | 0.2673        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5355     | 25200     | 0.2746        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5419     | 25500     | 0.2681        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5483     | 25800     | 0.2676        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5547     | 26100     | 0.2686        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5610     | 26400     | 0.2652        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5674     | 26700     | 0.2596        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5738     | 27000     | 0.2677        | 0.2494          | 0.6018                      | 0.2460                       | 0.5280                 | 0.4586                        | 0.6238                      | 0.2775                       | 0.5673                 | 0.4895                        |

| 0.5802     | 27300     | 0.2621        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5865     | 27600     | 0.2558        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5929     | 27900     | 0.251         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.5993     | 28200     | 0.2601        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6057     | 28500     | 0.2612        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6120     | 28800     | 0.2695        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6184     | 29100     | 0.2662        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6248     | 29400     | 0.2589        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6312     | 29700     | 0.2602        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6376     | 30000     | 0.2698        | 0.2507          | 0.5892                      | 0.2996                       | 0.5386                 | 0.4758                        | 0.6102                      | 0.2941                       | 0.5535                 | 0.4860                        |

| 0.6439     | 30300     | 0.2625        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6503     | 30600     | 0.2598        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6567     | 30900     | 0.2594        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6631     | 31200     | 0.2618        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6694     | 31500     | 0.2556        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6758     | 31800     | 0.2591        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6822     | 32100     | 0.2544        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6886     | 32400     | 0.2589        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.6949     | 32700     | 0.2522        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7013     | 33000     | 0.2521        | 0.2535          | 0.6053                      | 0.2650                       | 0.5329                 | 0.4677                        | 0.6115                      | 0.2925                       | 0.6057                 | 0.5032                        |

| 0.7077     | 33300     | 0.2576        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7141     | 33600     | 0.2582        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7204     | 33900     | 0.2567        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7268     | 34200     | 0.2577        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7332     | 34500     | 0.2568        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7396     | 34800     | 0.254         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7459     | 35100     | 0.2489        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7523     | 35400     | 0.2545        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7587     | 35700     | 0.2476        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7651     | 36000     | 0.2637        | 0.2397          | 0.6138                      | 0.2726                       | 0.5627                 | 0.4831                        | 0.6056                      | 0.2889                       | 0.5745                 | 0.4897                        |

| 0.7714     | 36300     | 0.2508        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7778     | 36600     | 0.2569        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7842     | 36900     | 0.2419        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7906     | 37200     | 0.2453        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.7969     | 37500     | 0.2456        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8033     | 37800     | 0.2497        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8097     | 38100     | 0.2556        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8161     | 38400     | 0.252         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8224     | 38700     | 0.2423        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8288     | 39000     | 0.2545        | 0.2301          | 0.5927                      | 0.2895                       | 0.5553                 | 0.4792                        | 0.5979                      | 0.2987                       | 0.5587                 | 0.4851                        |

| 0.8352     | 39300     | 0.2482        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8416     | 39600     | 0.2429        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8479     | 39900     | 0.2463        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8543     | 40200     | 0.2354        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8607     | 40500     | 0.2466        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8671     | 40800     | 0.2484        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8734     | 41100     | 0.2448        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8798     | 41400     | 0.2448        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8862     | 41700     | 0.2515        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.8926     | 42000     | 0.2428        | 0.2392          | 0.6001                      | 0.2826                       | 0.5857                 | 0.4895                        | 0.6208                      | 0.3019                       | 0.6010                 | 0.5079                        |

| 0.8989     | 42300     | 0.2497        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.9053     | 42600     | 0.2415        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.9117     | 42900     | 0.2408        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.9181     | 43200     | 0.242         | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.9245     | 43500     | 0.2412        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.9308     | 43800     | 0.2472        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.9372     | 44100     | 0.2408        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.9436     | 44400     | 0.2374        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| 0.9500     | 44700     | 0.2312        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

| **0.9563** | **45000** | **0.2412**    | **0.2379**      | **0.6079**                  | **0.2711**                   | **0.5977**             | **0.4922**                    | **0.6326**                  | **0.3071**                   | **0.5943**             | **0.5113**                    |
| 0.9627     | 45300     | 0.2381        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |
| 0.9691     | 45600     | 0.2456        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |
| 0.9755     | 45900     | 0.2418        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |
| 0.9818     | 46200     | 0.2355        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |
| 0.9882     | 46500     | 0.2424        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |
| 0.9946     | 46800     | 0.2389        | -               | -                           | -                            | -                      | -                             | -                           | -                            | -                      | -                             |

* The bold row denotes the saved checkpoint.
</details>

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 1.202 kWh
- **Carbon Emitted**: 0.467 kg of CO2
- **Hours Used**: 3.125 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex

@inproceedings{reimers-2019-sentence-bert,

    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",

    author = "Reimers, Nils and Gurevych, Iryna",

    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",

    month = "11",

    year = "2019",

    publisher = "Association for Computational Linguistics",

    url = "https://arxiv.org/abs/1908.10084",

}

```

#### CSRLoss
```bibtex

@misc{wen2025matryoshkarevisitingsparsecoding,

      title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},

      author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},

      year={2025},

      eprint={2503.01776},

      archivePrefix={arXiv},

      primaryClass={cs.LG},

      url={https://arxiv.org/abs/2503.01776},

}

```

#### SparseMultipleNegativesRankingLoss
```bibtex

@misc{henderson2017efficient,

    title={Efficient Natural Language Response Suggestion for Smart Reply},

    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},

    year={2017},

    eprint={1705.00652},

    archivePrefix={arXiv},

    primaryClass={cs.CL}

}

```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->