File size: 91,731 Bytes
f75f9d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- csr
- generated_from_trainer
- dataset_size:3011496
- loss:CSRLoss
- loss:SparseMultipleNegativesRankingLoss
base_model: mixedbread-ai/mxbai-embed-large-v1
widget:
- source_sentence: how much is a car title transfer in minnesota?
sentences:
- This complex is a larger molecule than the original crystal violet stain and iodine
and is insoluble in water. ... Conversely, the the outer membrane of Gram negative
bacteria is degraded and the thinner peptidoglycan layer of Gram negative cells
is unable to retain the crystal violet-iodine complex and the color is lost.
- Get insurance on the car and provide proof. Bring this information (including
the title) to the Minnesota DVS office, as well as $10 for the filing fee and
$7.25 for the titling fee. There is also a $10 transfer tax, as well as a 6.5%
sales tax on the purchase price.
- 'One of the risks of DNP is that it accelerates the metabolism to a dangerously
fast level. Our metabolic system operates at the rate it does for a reason – it
is safe. Speeding up the metabolism may help burn off fat, but it can also trigger
a number of potentially dangerous side effects, such as: fever.'
- source_sentence: what is the difference between 18 and 20 inch tires?
sentences:
- The only real difference is a 20" rim would be more likely to be damaged, as you
pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the
availability of tires will likely be much more limited for the larger rim. ...
Tire selection is better for 18" wheels than 20" wheels.
- '[''Open your Outlook app on your mobile device and click on the Settings gear
icon.'', ''Under Settings, click on the Signature option.'', ''Enter either a
generic signature that could be used for all email accounts tied to your Outlook
app, or a specific signature, Per Account Signature, for each email account.'']'
- The average normal body temperature is around 98.6 degrees Fahrenheit, or 37 degrees
Celsius. If your body temperature drops to just a few degrees lower than this,
your blood vessels in your hands, feet, arms, and legs start to get narrower.
- source_sentence: whom the bell tolls meaning?
sentences:
- 'Answer: Humans are depicted in Hindu art often in sensuous and erotic postures.'
- The phrase "For whom the bell tolls" refers to the church bells that are rung
when a person dies. Hence, the author is suggesting that we should not be curious
as to for whom the church bell is tolling for. It is for all of us.
- '[''Automatically.'', ''When connected to car Bluetooth and,'', ''Manually.'']'
- source_sentence: how long before chlamydia symptoms appear?
sentences:
- Most people who have chlamydia don't notice any symptoms. If you do get symptoms,
these usually appear between 1 and 3 weeks after having unprotected sex with an
infected person. For some people they don't develop until many months later. Sometimes
the symptoms can disappear after a few days.
- '[''Open the My Verizon app . ... '', ''Tap the Menu icon. ... '', ''Tap Manage
device for the appropriate mobile number. ... '', ''Tap Transfer content between
phones. ... '', ''Tap Start Transfer.'']'
- 'Psychiatrist vs Psychologist A psychiatrist is classed as a medical doctor, they
include a physical examination of symptoms in their assessment and are able to
prescribe medicine: a psychologist is also a doctor by virtue of their PHD level
qualification, but is not medically trained and cannot prescribe.'
- source_sentence: are you human korean novela?
sentences:
- Many cysts heal on their own, which means that conservative treatments like rest
and anti-inflammatory painkillers can often be enough to get rid of them. However,
in some cases, routine drainage of the sac may be necessary to reduce symptoms.
- A relative of European pear varieties like Bartlett and Anjou, the Asian pear
is great used in recipes or simply eaten out of hand. It retains a crispness that
works well in slaws and salads, and it holds its shape better than European pears
when baked and cooked.
- 'Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?)
is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon.
It aired on KBS2''s Mondays and Tuesdays at 22:00 (KST) time slot, from June 4
to August 7, 2018.'
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- row_non_zero_mean_query
- row_sparsity_mean_query
- row_non_zero_mean_corpus
- row_sparsity_mean_corpus
co2_eq_emissions:
emissions: 467.36155743833086
energy_consumed: 1.2023646840981803
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 3.125
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: Sparse CSR model trained on Natural Questions
results:
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 128
type: NanoMSMARCO_128
metrics:
- type: dot_accuracy@1
value: 0.42
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.68
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.8
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.42
name: Dot Precision@1
- type: dot_precision@3
value: 0.21333333333333332
name: Dot Precision@3
- type: dot_precision@5
value: 0.136
name: Dot Precision@5
- type: dot_precision@10
value: 0.08
name: Dot Precision@10
- type: dot_recall@1
value: 0.42
name: Dot Recall@1
- type: dot_recall@3
value: 0.64
name: Dot Recall@3
- type: dot_recall@5
value: 0.68
name: Dot Recall@5
- type: dot_recall@10
value: 0.8
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6079185617079585
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5469047619047619
name: Dot Mrr@10
- type: dot_map@100
value: 0.5546949863343481
name: Dot Map@100
- type: row_non_zero_mean_query
value: 128.0
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.96875
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 128.0
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.96875
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 128
type: NanoNFCorpus_128
metrics:
- type: dot_accuracy@1
value: 0.28
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.46
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.58
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.66
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.28
name: Dot Precision@1
- type: dot_precision@3
value: 0.2866666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.28
name: Dot Precision@5
- type: dot_precision@10
value: 0.24600000000000002
name: Dot Precision@10
- type: dot_recall@1
value: 0.010077778443246685
name: Dot Recall@1
- type: dot_recall@3
value: 0.04965300165842144
name: Dot Recall@3
- type: dot_recall@5
value: 0.07680443441830657
name: Dot Recall@5
- type: dot_recall@10
value: 0.10785346110615711
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.27112973349418856
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.3951904761904761
name: Dot Mrr@10
- type: dot_map@100
value: 0.10882673834779542
name: Dot Map@100
- type: row_non_zero_mean_query
value: 128.0
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.96875
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 128.0
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.96875
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 128
type: NanoNQ_128
metrics:
- type: dot_accuracy@1
value: 0.46
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.62
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.7
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.82
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.46
name: Dot Precision@1
- type: dot_precision@3
value: 0.20666666666666667
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.08199999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.44
name: Dot Recall@1
- type: dot_recall@3
value: 0.58
name: Dot Recall@3
- type: dot_recall@5
value: 0.65
name: Dot Recall@5
- type: dot_recall@10
value: 0.76
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5976862103963738
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5692222222222223
name: Dot Mrr@10
- type: dot_map@100
value: 0.5513454286143362
name: Dot Map@100
- type: row_non_zero_mean_query
value: 128.0
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.96875
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 128.0
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.96875
name: Row Sparsity Mean Corpus
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 128
type: NanoBEIR_mean_128
metrics:
- type: dot_accuracy@1
value: 0.38666666666666666
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.5733333333333334
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6533333333333333
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7599999999999999
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38666666666666666
name: Dot Precision@1
- type: dot_precision@3
value: 0.23555555555555555
name: Dot Precision@3
- type: dot_precision@5
value: 0.18533333333333335
name: Dot Precision@5
- type: dot_precision@10
value: 0.136
name: Dot Precision@10
- type: dot_recall@1
value: 0.2900259261477489
name: Dot Recall@1
- type: dot_recall@3
value: 0.4232176672194738
name: Dot Recall@3
- type: dot_recall@5
value: 0.4689348114727689
name: Dot Recall@5
- type: dot_recall@10
value: 0.5559511537020524
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.49224483519950696
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5037724867724868
name: Dot Mrr@10
- type: dot_map@100
value: 0.4049557177654933
name: Dot Map@100
- type: row_non_zero_mean_query
value: 128.0
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.96875
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 128.0
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.96875
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoMSMARCO 256
type: NanoMSMARCO_256
metrics:
- type: dot_accuracy@1
value: 0.42
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.7
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.76
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.42
name: Dot Precision@1
- type: dot_precision@3
value: 0.2333333333333333
name: Dot Precision@3
- type: dot_precision@5
value: 0.15200000000000002
name: Dot Precision@5
- type: dot_precision@10
value: 0.08399999999999999
name: Dot Precision@10
- type: dot_recall@1
value: 0.42
name: Dot Recall@1
- type: dot_recall@3
value: 0.7
name: Dot Recall@3
- type: dot_recall@5
value: 0.76
name: Dot Recall@5
- type: dot_recall@10
value: 0.84
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.6326016391887893
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.566111111111111
name: Dot Mrr@10
- type: dot_map@100
value: 0.5727341193854673
name: Dot Map@100
- type: row_non_zero_mean_query
value: 256.0
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9375
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 256.0
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9375
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNFCorpus 256
type: NanoNFCorpus_256
metrics:
- type: dot_accuracy@1
value: 0.32
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.56
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.62
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.32
name: Dot Precision@1
- type: dot_precision@3
value: 0.31999999999999995
name: Dot Precision@3
- type: dot_precision@5
value: 0.316
name: Dot Precision@5
- type: dot_precision@10
value: 0.262
name: Dot Precision@10
- type: dot_recall@1
value: 0.030392237560226815
name: Dot Recall@1
- type: dot_recall@3
value: 0.0717373009745601
name: Dot Recall@3
- type: dot_recall@5
value: 0.09312218308574575
name: Dot Recall@5
- type: dot_recall@10
value: 0.133341363492939
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.30709320262394824
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.45252380952380944
name: Dot Mrr@10
- type: dot_map@100
value: 0.14302697817666413
name: Dot Map@100
- type: row_non_zero_mean_query
value: 256.0
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9375
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 256.0
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9375
name: Row Sparsity Mean Corpus
- task:
type: sparse-information-retrieval
name: Sparse Information Retrieval
dataset:
name: NanoNQ 256
type: NanoNQ_256
metrics:
- type: dot_accuracy@1
value: 0.42
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.64
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.68
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.84
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.42
name: Dot Precision@1
- type: dot_precision@3
value: 0.22
name: Dot Precision@3
- type: dot_precision@5
value: 0.14
name: Dot Precision@5
- type: dot_precision@10
value: 0.088
name: Dot Precision@10
- type: dot_recall@1
value: 0.4
name: Dot Recall@1
- type: dot_recall@3
value: 0.6
name: Dot Recall@3
- type: dot_recall@5
value: 0.63
name: Dot Recall@5
- type: dot_recall@10
value: 0.79
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.594269599796927
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5505952380952379
name: Dot Mrr@10
- type: dot_map@100
value: 0.5330295920949546
name: Dot Map@100
- type: row_non_zero_mean_query
value: 256.0
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9375
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 256.0
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9375
name: Row Sparsity Mean Corpus
- task:
type: sparse-nano-beir
name: Sparse Nano BEIR
dataset:
name: NanoBEIR mean 256
type: NanoBEIR_mean_256
metrics:
- type: dot_accuracy@1
value: 0.38666666666666666
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.6333333333333333
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.6866666666666666
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.7933333333333333
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.38666666666666666
name: Dot Precision@1
- type: dot_precision@3
value: 0.2577777777777777
name: Dot Precision@3
- type: dot_precision@5
value: 0.2026666666666667
name: Dot Precision@5
- type: dot_precision@10
value: 0.14466666666666664
name: Dot Precision@10
- type: dot_recall@1
value: 0.28346407918674227
name: Dot Recall@1
- type: dot_recall@3
value: 0.45724576699152
name: Dot Recall@3
- type: dot_recall@5
value: 0.4943740610285819
name: Dot Recall@5
- type: dot_recall@10
value: 0.5877804544976463
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.5113214805365548
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.5230767195767194
name: Dot Mrr@10
- type: dot_map@100
value: 0.41626356321902863
name: Dot Map@100
- type: row_non_zero_mean_query
value: 256.0
name: Row Non Zero Mean Query
- type: row_sparsity_mean_query
value: 0.9375
name: Row Sparsity Mean Query
- type: row_non_zero_mean_corpus
value: 256.0
name: Row Non Zero Mean Corpus
- type: row_sparsity_mean_corpus
value: 0.9375
name: Row Sparsity Mean Corpus
---
# Sparse CSR model trained on Natural Questions
This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
## Model Details
### Model Description
- **Model Type:** CSR Sparse Encoder
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 4096 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
### Full Model Architecture
```
SparseEncoder(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-gooaq-2e-4")
# Run inference
sentences = [
'are you human korean novela?',
"Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?) is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon. It aired on KBS2's Mondays and Tuesdays at 22:00 (KST) time slot, from June 4 to August 7, 2018.",
'A relative of European pear varieties like Bartlett and Anjou, the Asian pear is great used in recipes or simply eaten out of hand. It retains a crispness that works well in slaws and salads, and it holds its shape better than European pears when baked and cooked.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 4096)
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO_128`, `NanoNFCorpus_128` and `NanoNQ_128`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 128
}
```
| Metric | NanoMSMARCO_128 | NanoNFCorpus_128 | NanoNQ_128 |
|:-------------------------|:----------------|:-----------------|:-----------|
| dot_accuracy@1 | 0.42 | 0.28 | 0.46 |
| dot_accuracy@3 | 0.64 | 0.46 | 0.62 |
| dot_accuracy@5 | 0.68 | 0.58 | 0.7 |
| dot_accuracy@10 | 0.8 | 0.66 | 0.82 |
| dot_precision@1 | 0.42 | 0.28 | 0.46 |
| dot_precision@3 | 0.2133 | 0.2867 | 0.2067 |
| dot_precision@5 | 0.136 | 0.28 | 0.14 |
| dot_precision@10 | 0.08 | 0.246 | 0.082 |
| dot_recall@1 | 0.42 | 0.0101 | 0.44 |
| dot_recall@3 | 0.64 | 0.0497 | 0.58 |
| dot_recall@5 | 0.68 | 0.0768 | 0.65 |
| dot_recall@10 | 0.8 | 0.1079 | 0.76 |
| **dot_ndcg@10** | **0.6079** | **0.2711** | **0.5977** |
| dot_mrr@10 | 0.5469 | 0.3952 | 0.5692 |
| dot_map@100 | 0.5547 | 0.1088 | 0.5513 |
| row_non_zero_mean_query | 128.0 | 128.0 | 128.0 |
| row_sparsity_mean_query | 0.9688 | 0.9688 | 0.9688 |
| row_non_zero_mean_corpus | 128.0 | 128.0 | 128.0 |
| row_sparsity_mean_corpus | 0.9688 | 0.9688 | 0.9688 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_128`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"max_active_dims": 128
}
```
| Metric | Value |
|:-------------------------|:-----------|
| dot_accuracy@1 | 0.3867 |
| dot_accuracy@3 | 0.5733 |
| dot_accuracy@5 | 0.6533 |
| dot_accuracy@10 | 0.76 |
| dot_precision@1 | 0.3867 |
| dot_precision@3 | 0.2356 |
| dot_precision@5 | 0.1853 |
| dot_precision@10 | 0.136 |
| dot_recall@1 | 0.29 |
| dot_recall@3 | 0.4232 |
| dot_recall@5 | 0.4689 |
| dot_recall@10 | 0.556 |
| **dot_ndcg@10** | **0.4922** |
| dot_mrr@10 | 0.5038 |
| dot_map@100 | 0.405 |
| row_non_zero_mean_query | 128.0 |
| row_sparsity_mean_query | 0.9688 |
| row_non_zero_mean_corpus | 128.0 |
| row_sparsity_mean_corpus | 0.9688 |
#### Sparse Information Retrieval
* Datasets: `NanoMSMARCO_256`, `NanoNFCorpus_256` and `NanoNQ_256`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
```json
{
"max_active_dims": 256
}
```
| Metric | NanoMSMARCO_256 | NanoNFCorpus_256 | NanoNQ_256 |
|:-------------------------|:----------------|:-----------------|:-----------|
| dot_accuracy@1 | 0.42 | 0.32 | 0.42 |
| dot_accuracy@3 | 0.7 | 0.56 | 0.64 |
| dot_accuracy@5 | 0.76 | 0.62 | 0.68 |
| dot_accuracy@10 | 0.84 | 0.7 | 0.84 |
| dot_precision@1 | 0.42 | 0.32 | 0.42 |
| dot_precision@3 | 0.2333 | 0.32 | 0.22 |
| dot_precision@5 | 0.152 | 0.316 | 0.14 |
| dot_precision@10 | 0.084 | 0.262 | 0.088 |
| dot_recall@1 | 0.42 | 0.0304 | 0.4 |
| dot_recall@3 | 0.7 | 0.0717 | 0.6 |
| dot_recall@5 | 0.76 | 0.0931 | 0.63 |
| dot_recall@10 | 0.84 | 0.1333 | 0.79 |
| **dot_ndcg@10** | **0.6326** | **0.3071** | **0.5943** |
| dot_mrr@10 | 0.5661 | 0.4525 | 0.5506 |
| dot_map@100 | 0.5727 | 0.143 | 0.533 |
| row_non_zero_mean_query | 256.0 | 256.0 | 256.0 |
| row_sparsity_mean_query | 0.9375 | 0.9375 | 0.9375 |
| row_non_zero_mean_corpus | 256.0 | 256.0 | 256.0 |
| row_sparsity_mean_corpus | 0.9375 | 0.9375 | 0.9375 |
#### Sparse Nano BEIR
* Dataset: `NanoBEIR_mean_256`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
```json
{
"dataset_names": [
"msmarco",
"nfcorpus",
"nq"
],
"max_active_dims": 256
}
```
| Metric | Value |
|:-------------------------|:-----------|
| dot_accuracy@1 | 0.3867 |
| dot_accuracy@3 | 0.6333 |
| dot_accuracy@5 | 0.6867 |
| dot_accuracy@10 | 0.7933 |
| dot_precision@1 | 0.3867 |
| dot_precision@3 | 0.2578 |
| dot_precision@5 | 0.2027 |
| dot_precision@10 | 0.1447 |
| dot_recall@1 | 0.2835 |
| dot_recall@3 | 0.4572 |
| dot_recall@5 | 0.4944 |
| dot_recall@10 | 0.5878 |
| **dot_ndcg@10** | **0.5113** |
| dot_mrr@10 | 0.5231 |
| dot_map@100 | 0.4163 |
| row_non_zero_mean_query | 256.0 |
| row_sparsity_mean_query | 0.9375 |
| row_non_zero_mean_corpus | 256.0 |
| row_sparsity_mean_corpus | 0.9375 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 3,011,496 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.87 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.09 tokens</li><li>max: 201 tokens</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>what is the difference between clay and mud mask?</code> | <code>The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.</code> |
| <code>myki how much on card?</code> | <code>A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.</code> |
| <code>how to find out if someone blocked your phone number on iphone?</code> | <code>If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.</code> |
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 1.0,
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
```
### Evaluation Dataset
#### gooaq
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 1,000 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
| | question | answer |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
| question | answer |
|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> |
| <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> |
| <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
```json
{
"beta": 0.1,
"gamma": 1.0,
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `learning_rate`: 0.0002
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 0.0002
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_128_dot_ndcg@10 | NanoNFCorpus_128_dot_ndcg@10 | NanoNQ_128_dot_ndcg@10 | NanoBEIR_mean_128_dot_ndcg@10 | NanoMSMARCO_256_dot_ndcg@10 | NanoNFCorpus_256_dot_ndcg@10 | NanoNQ_256_dot_ndcg@10 | NanoBEIR_mean_256_dot_ndcg@10 |
|:----------:|:---------:|:-------------:|:---------------:|:---------------------------:|:----------------------------:|:----------------------:|:-----------------------------:|:---------------------------:|:----------------------------:|:----------------------:|:-----------------------------:|
| -1 | -1 | - | - | 0.6175 | 0.2875 | 0.5432 | 0.4827 | 0.6158 | 0.3234 | 0.5929 | 0.5107 |
| 0.0064 | 300 | 0.3621 | - | - | - | - | - | - | - | - | - |
| 0.0128 | 600 | 0.3319 | - | - | - | - | - | - | - | - | - |
| 0.0191 | 900 | 0.3212 | - | - | - | - | - | - | - | - | - |
| 0.0255 | 1200 | 0.3154 | - | - | - | - | - | - | - | - | - |
| 0.0319 | 1500 | 0.3129 | - | - | - | - | - | - | - | - | - |
| 0.0383 | 1800 | 0.309 | - | - | - | - | - | - | - | - | - |
| 0.0446 | 2100 | 0.317 | - | - | - | - | - | - | - | - | - |
| 0.0510 | 2400 | 0.2997 | - | - | - | - | - | - | - | - | - |
| 0.0574 | 2700 | 0.3409 | - | - | - | - | - | - | - | - | - |
| 0.0638 | 3000 | 0.3251 | 0.3136 | 0.6049 | 0.2393 | 0.5583 | 0.4675 | 0.5950 | 0.2559 | 0.5555 | 0.4688 |
| 0.0701 | 3300 | 0.3291 | - | - | - | - | - | - | - | - | - |
| 0.0765 | 3600 | 0.3366 | - | - | - | - | - | - | - | - | - |
| 0.0829 | 3900 | 0.3286 | - | - | - | - | - | - | - | - | - |
| 0.0893 | 4200 | 0.3264 | - | - | - | - | - | - | - | - | - |
| 0.0956 | 4500 | 0.3413 | - | - | - | - | - | - | - | - | - |
| 0.1020 | 4800 | 0.3352 | - | - | - | - | - | - | - | - | - |
| 0.1084 | 5100 | 0.3323 | - | - | - | - | - | - | - | - | - |
| 0.1148 | 5400 | 0.3308 | - | - | - | - | - | - | - | - | - |
| 0.1211 | 5700 | 0.3127 | - | - | - | - | - | - | - | - | - |
| 0.1275 | 6000 | 0.3224 | 0.2949 | 0.5445 | 0.2155 | 0.5394 | 0.4331 | 0.5911 | 0.2340 | 0.5365 | 0.4539 |
| 0.1339 | 6300 | 0.3216 | - | - | - | - | - | - | - | - | - |
| 0.1403 | 6600 | 0.3202 | - | - | - | - | - | - | - | - | - |
| 0.1466 | 6900 | 0.3296 | - | - | - | - | - | - | - | - | - |
| 0.1530 | 7200 | 0.3171 | - | - | - | - | - | - | - | - | - |
| 0.1594 | 7500 | 0.3141 | - | - | - | - | - | - | - | - | - |
| 0.1658 | 7800 | 0.3202 | - | - | - | - | - | - | - | - | - |
| 0.1721 | 8100 | 0.3088 | - | - | - | - | - | - | - | - | - |
| 0.1785 | 8400 | 0.304 | - | - | - | - | - | - | - | - | - |
| 0.1849 | 8700 | 0.3105 | - | - | - | - | - | - | - | - | - |
| 0.1913 | 9000 | 0.307 | 0.2849 | 0.6038 | 0.2258 | 0.5471 | 0.4589 | 0.6241 | 0.2449 | 0.5498 | 0.4730 |
| 0.1976 | 9300 | 0.3043 | - | - | - | - | - | - | - | - | - |
| 0.2040 | 9600 | 0.3035 | - | - | - | - | - | - | - | - | - |
| 0.2104 | 9900 | 0.3069 | - | - | - | - | - | - | - | - | - |
| 0.2168 | 10200 | 0.3174 | - | - | - | - | - | - | - | - | - |
| 0.2231 | 10500 | 0.3111 | - | - | - | - | - | - | - | - | - |
| 0.2295 | 10800 | 0.295 | - | - | - | - | - | - | - | - | - |
| 0.2359 | 11100 | 0.2892 | - | - | - | - | - | - | - | - | - |
| 0.2423 | 11400 | 0.3012 | - | - | - | - | - | - | - | - | - |
| 0.2486 | 11700 | 0.3061 | - | - | - | - | - | - | - | - | - |
| 0.2550 | 12000 | 0.2863 | 0.2631 | 0.6190 | 0.2720 | 0.5379 | 0.4763 | 0.6056 | 0.2898 | 0.5419 | 0.4791 |
| 0.2614 | 12300 | 0.3008 | - | - | - | - | - | - | - | - | - |
| 0.2678 | 12600 | 0.2849 | - | - | - | - | - | - | - | - | - |
| 0.2741 | 12900 | 0.2876 | - | - | - | - | - | - | - | - | - |
| 0.2805 | 13200 | 0.2963 | - | - | - | - | - | - | - | - | - |
| 0.2869 | 13500 | 0.2926 | - | - | - | - | - | - | - | - | - |
| 0.2933 | 13800 | 0.2855 | - | - | - | - | - | - | - | - | - |
| 0.2996 | 14100 | 0.2868 | - | - | - | - | - | - | - | - | - |
| 0.3060 | 14400 | 0.294 | - | - | - | - | - | - | - | - | - |
| 0.3124 | 14700 | 0.3008 | - | - | - | - | - | - | - | - | - |
| 0.3188 | 15000 | 0.293 | 0.2745 | 0.5538 | 0.2847 | 0.5422 | 0.4602 | 0.5615 | 0.2976 | 0.5588 | 0.4726 |
| 0.3252 | 15300 | 0.2776 | - | - | - | - | - | - | - | - | - |
| 0.3315 | 15600 | 0.2906 | - | - | - | - | - | - | - | - | - |
| 0.3379 | 15900 | 0.2874 | - | - | - | - | - | - | - | - | - |
| 0.3443 | 16200 | 0.2834 | - | - | - | - | - | - | - | - | - |
| 0.3507 | 16500 | 0.2718 | - | - | - | - | - | - | - | - | - |
| 0.3570 | 16800 | 0.2834 | - | - | - | - | - | - | - | - | - |
| 0.3634 | 17100 | 0.2833 | - | - | - | - | - | - | - | - | - |
| 0.3698 | 17400 | 0.281 | - | - | - | - | - | - | - | - | - |
| 0.3762 | 17700 | 0.2922 | - | - | - | - | - | - | - | - | - |
| 0.3825 | 18000 | 0.279 | 0.2623 | 0.5851 | 0.2696 | 0.5097 | 0.4548 | 0.5849 | 0.2776 | 0.5570 | 0.4732 |
| 0.3889 | 18300 | 0.2894 | - | - | - | - | - | - | - | - | - |
| 0.3953 | 18600 | 0.283 | - | - | - | - | - | - | - | - | - |
| 0.4017 | 18900 | 0.2824 | - | - | - | - | - | - | - | - | - |
| 0.4080 | 19200 | 0.2758 | - | - | - | - | - | - | - | - | - |
| 0.4144 | 19500 | 0.2893 | - | - | - | - | - | - | - | - | - |
| 0.4208 | 19800 | 0.278 | - | - | - | - | - | - | - | - | - |
| 0.4272 | 20100 | 0.2814 | - | - | - | - | - | - | - | - | - |
| 0.4335 | 20400 | 0.278 | - | - | - | - | - | - | - | - | - |
| 0.4399 | 20700 | 0.2783 | - | - | - | - | - | - | - | - | - |
| 0.4463 | 21000 | 0.2803 | 0.2510 | 0.5880 | 0.2664 | 0.5664 | 0.4736 | 0.6115 | 0.2734 | 0.5465 | 0.4772 |
| 0.4527 | 21300 | 0.2668 | - | - | - | - | - | - | - | - | - |
| 0.4590 | 21600 | 0.2828 | - | - | - | - | - | - | - | - | - |
| 0.4654 | 21900 | 0.2815 | - | - | - | - | - | - | - | - | - |
| 0.4718 | 22200 | 0.2778 | - | - | - | - | - | - | - | - | - |
| 0.4782 | 22500 | 0.271 | - | - | - | - | - | - | - | - | - |
| 0.4845 | 22800 | 0.2696 | - | - | - | - | - | - | - | - | - |
| 0.4909 | 23100 | 0.2698 | - | - | - | - | - | - | - | - | - |
| 0.4973 | 23400 | 0.2768 | - | - | - | - | - | - | - | - | - |
| 0.5037 | 23700 | 0.2626 | - | - | - | - | - | - | - | - | - |
| 0.5100 | 24000 | 0.2611 | 0.2414 | 0.6078 | 0.2635 | 0.5668 | 0.4794 | 0.6231 | 0.2942 | 0.5944 | 0.5039 |
| 0.5164 | 24300 | 0.2736 | - | - | - | - | - | - | - | - | - |
| 0.5228 | 24600 | 0.2695 | - | - | - | - | - | - | - | - | - |
| 0.5292 | 24900 | 0.2673 | - | - | - | - | - | - | - | - | - |
| 0.5355 | 25200 | 0.2746 | - | - | - | - | - | - | - | - | - |
| 0.5419 | 25500 | 0.2681 | - | - | - | - | - | - | - | - | - |
| 0.5483 | 25800 | 0.2676 | - | - | - | - | - | - | - | - | - |
| 0.5547 | 26100 | 0.2686 | - | - | - | - | - | - | - | - | - |
| 0.5610 | 26400 | 0.2652 | - | - | - | - | - | - | - | - | - |
| 0.5674 | 26700 | 0.2596 | - | - | - | - | - | - | - | - | - |
| 0.5738 | 27000 | 0.2677 | 0.2494 | 0.6018 | 0.2460 | 0.5280 | 0.4586 | 0.6238 | 0.2775 | 0.5673 | 0.4895 |
| 0.5802 | 27300 | 0.2621 | - | - | - | - | - | - | - | - | - |
| 0.5865 | 27600 | 0.2558 | - | - | - | - | - | - | - | - | - |
| 0.5929 | 27900 | 0.251 | - | - | - | - | - | - | - | - | - |
| 0.5993 | 28200 | 0.2601 | - | - | - | - | - | - | - | - | - |
| 0.6057 | 28500 | 0.2612 | - | - | - | - | - | - | - | - | - |
| 0.6120 | 28800 | 0.2695 | - | - | - | - | - | - | - | - | - |
| 0.6184 | 29100 | 0.2662 | - | - | - | - | - | - | - | - | - |
| 0.6248 | 29400 | 0.2589 | - | - | - | - | - | - | - | - | - |
| 0.6312 | 29700 | 0.2602 | - | - | - | - | - | - | - | - | - |
| 0.6376 | 30000 | 0.2698 | 0.2507 | 0.5892 | 0.2996 | 0.5386 | 0.4758 | 0.6102 | 0.2941 | 0.5535 | 0.4860 |
| 0.6439 | 30300 | 0.2625 | - | - | - | - | - | - | - | - | - |
| 0.6503 | 30600 | 0.2598 | - | - | - | - | - | - | - | - | - |
| 0.6567 | 30900 | 0.2594 | - | - | - | - | - | - | - | - | - |
| 0.6631 | 31200 | 0.2618 | - | - | - | - | - | - | - | - | - |
| 0.6694 | 31500 | 0.2556 | - | - | - | - | - | - | - | - | - |
| 0.6758 | 31800 | 0.2591 | - | - | - | - | - | - | - | - | - |
| 0.6822 | 32100 | 0.2544 | - | - | - | - | - | - | - | - | - |
| 0.6886 | 32400 | 0.2589 | - | - | - | - | - | - | - | - | - |
| 0.6949 | 32700 | 0.2522 | - | - | - | - | - | - | - | - | - |
| 0.7013 | 33000 | 0.2521 | 0.2535 | 0.6053 | 0.2650 | 0.5329 | 0.4677 | 0.6115 | 0.2925 | 0.6057 | 0.5032 |
| 0.7077 | 33300 | 0.2576 | - | - | - | - | - | - | - | - | - |
| 0.7141 | 33600 | 0.2582 | - | - | - | - | - | - | - | - | - |
| 0.7204 | 33900 | 0.2567 | - | - | - | - | - | - | - | - | - |
| 0.7268 | 34200 | 0.2577 | - | - | - | - | - | - | - | - | - |
| 0.7332 | 34500 | 0.2568 | - | - | - | - | - | - | - | - | - |
| 0.7396 | 34800 | 0.254 | - | - | - | - | - | - | - | - | - |
| 0.7459 | 35100 | 0.2489 | - | - | - | - | - | - | - | - | - |
| 0.7523 | 35400 | 0.2545 | - | - | - | - | - | - | - | - | - |
| 0.7587 | 35700 | 0.2476 | - | - | - | - | - | - | - | - | - |
| 0.7651 | 36000 | 0.2637 | 0.2397 | 0.6138 | 0.2726 | 0.5627 | 0.4831 | 0.6056 | 0.2889 | 0.5745 | 0.4897 |
| 0.7714 | 36300 | 0.2508 | - | - | - | - | - | - | - | - | - |
| 0.7778 | 36600 | 0.2569 | - | - | - | - | - | - | - | - | - |
| 0.7842 | 36900 | 0.2419 | - | - | - | - | - | - | - | - | - |
| 0.7906 | 37200 | 0.2453 | - | - | - | - | - | - | - | - | - |
| 0.7969 | 37500 | 0.2456 | - | - | - | - | - | - | - | - | - |
| 0.8033 | 37800 | 0.2497 | - | - | - | - | - | - | - | - | - |
| 0.8097 | 38100 | 0.2556 | - | - | - | - | - | - | - | - | - |
| 0.8161 | 38400 | 0.252 | - | - | - | - | - | - | - | - | - |
| 0.8224 | 38700 | 0.2423 | - | - | - | - | - | - | - | - | - |
| 0.8288 | 39000 | 0.2545 | 0.2301 | 0.5927 | 0.2895 | 0.5553 | 0.4792 | 0.5979 | 0.2987 | 0.5587 | 0.4851 |
| 0.8352 | 39300 | 0.2482 | - | - | - | - | - | - | - | - | - |
| 0.8416 | 39600 | 0.2429 | - | - | - | - | - | - | - | - | - |
| 0.8479 | 39900 | 0.2463 | - | - | - | - | - | - | - | - | - |
| 0.8543 | 40200 | 0.2354 | - | - | - | - | - | - | - | - | - |
| 0.8607 | 40500 | 0.2466 | - | - | - | - | - | - | - | - | - |
| 0.8671 | 40800 | 0.2484 | - | - | - | - | - | - | - | - | - |
| 0.8734 | 41100 | 0.2448 | - | - | - | - | - | - | - | - | - |
| 0.8798 | 41400 | 0.2448 | - | - | - | - | - | - | - | - | - |
| 0.8862 | 41700 | 0.2515 | - | - | - | - | - | - | - | - | - |
| 0.8926 | 42000 | 0.2428 | 0.2392 | 0.6001 | 0.2826 | 0.5857 | 0.4895 | 0.6208 | 0.3019 | 0.6010 | 0.5079 |
| 0.8989 | 42300 | 0.2497 | - | - | - | - | - | - | - | - | - |
| 0.9053 | 42600 | 0.2415 | - | - | - | - | - | - | - | - | - |
| 0.9117 | 42900 | 0.2408 | - | - | - | - | - | - | - | - | - |
| 0.9181 | 43200 | 0.242 | - | - | - | - | - | - | - | - | - |
| 0.9245 | 43500 | 0.2412 | - | - | - | - | - | - | - | - | - |
| 0.9308 | 43800 | 0.2472 | - | - | - | - | - | - | - | - | - |
| 0.9372 | 44100 | 0.2408 | - | - | - | - | - | - | - | - | - |
| 0.9436 | 44400 | 0.2374 | - | - | - | - | - | - | - | - | - |
| 0.9500 | 44700 | 0.2312 | - | - | - | - | - | - | - | - | - |
| **0.9563** | **45000** | **0.2412** | **0.2379** | **0.6079** | **0.2711** | **0.5977** | **0.4922** | **0.6326** | **0.3071** | **0.5943** | **0.5113** |
| 0.9627 | 45300 | 0.2381 | - | - | - | - | - | - | - | - | - |
| 0.9691 | 45600 | 0.2456 | - | - | - | - | - | - | - | - | - |
| 0.9755 | 45900 | 0.2418 | - | - | - | - | - | - | - | - | - |
| 0.9818 | 46200 | 0.2355 | - | - | - | - | - | - | - | - | - |
| 0.9882 | 46500 | 0.2424 | - | - | - | - | - | - | - | - | - |
| 0.9946 | 46800 | 0.2389 | - | - | - | - | - | - | - | - | - |
* The bold row denotes the saved checkpoint.
</details>
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 1.202 kWh
- **Carbon Emitted**: 0.467 kg of CO2
- **Hours Used**: 3.125 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### CSRLoss
```bibtex
@misc{wen2025matryoshkarevisitingsparsecoding,
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
year={2025},
eprint={2503.01776},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2503.01776},
}
```
#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |