Add new SparseEncoder model
Browse files- 1_Pooling/config.json +10 -0
- 2_CSRSparsity/config.json +8 -0
- 2_CSRSparsity/model.safetensors +3 -0
- README.md +1306 -0
- config.json +26 -0
- config_sentence_transformers.json +14 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_CSRSparsity/config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"input_dim": 1024,
|
3 |
+
"hidden_dim": 4096,
|
4 |
+
"k": 256,
|
5 |
+
"k_aux": 512,
|
6 |
+
"normalize": false,
|
7 |
+
"dead_threshold": 30
|
8 |
+
}
|
2_CSRSparsity/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fbe29eba6d8321d8badbd9c18d1f92dff5141f253a62846c85005faefb04cb62
|
3 |
+
size 16830864
|
README.md
ADDED
@@ -0,0 +1,1306 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sparse-encoder
|
8 |
+
- sparse
|
9 |
+
- csr
|
10 |
+
- generated_from_trainer
|
11 |
+
- dataset_size:3011496
|
12 |
+
- loss:CSRLoss
|
13 |
+
- loss:SparseMultipleNegativesRankingLoss
|
14 |
+
base_model: mixedbread-ai/mxbai-embed-large-v1
|
15 |
+
widget:
|
16 |
+
- source_sentence: how much is a car title transfer in minnesota?
|
17 |
+
sentences:
|
18 |
+
- This complex is a larger molecule than the original crystal violet stain and iodine
|
19 |
+
and is insoluble in water. ... Conversely, the the outer membrane of Gram negative
|
20 |
+
bacteria is degraded and the thinner peptidoglycan layer of Gram negative cells
|
21 |
+
is unable to retain the crystal violet-iodine complex and the color is lost.
|
22 |
+
- Get insurance on the car and provide proof. Bring this information (including
|
23 |
+
the title) to the Minnesota DVS office, as well as $10 for the filing fee and
|
24 |
+
$7.25 for the titling fee. There is also a $10 transfer tax, as well as a 6.5%
|
25 |
+
sales tax on the purchase price.
|
26 |
+
- 'One of the risks of DNP is that it accelerates the metabolism to a dangerously
|
27 |
+
fast level. Our metabolic system operates at the rate it does for a reason – it
|
28 |
+
is safe. Speeding up the metabolism may help burn off fat, but it can also trigger
|
29 |
+
a number of potentially dangerous side effects, such as: fever.'
|
30 |
+
- source_sentence: what is the difference between 18 and 20 inch tires?
|
31 |
+
sentences:
|
32 |
+
- The only real difference is a 20" rim would be more likely to be damaged, as you
|
33 |
+
pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the
|
34 |
+
availability of tires will likely be much more limited for the larger rim. ...
|
35 |
+
Tire selection is better for 18" wheels than 20" wheels.
|
36 |
+
- '[''Open your Outlook app on your mobile device and click on the Settings gear
|
37 |
+
icon.'', ''Under Settings, click on the Signature option.'', ''Enter either a
|
38 |
+
generic signature that could be used for all email accounts tied to your Outlook
|
39 |
+
app, or a specific signature, Per Account Signature, for each email account.'']'
|
40 |
+
- The average normal body temperature is around 98.6 degrees Fahrenheit, or 37 degrees
|
41 |
+
Celsius. If your body temperature drops to just a few degrees lower than this,
|
42 |
+
your blood vessels in your hands, feet, arms, and legs start to get narrower.
|
43 |
+
- source_sentence: whom the bell tolls meaning?
|
44 |
+
sentences:
|
45 |
+
- 'Answer: Humans are depicted in Hindu art often in sensuous and erotic postures.'
|
46 |
+
- The phrase "For whom the bell tolls" refers to the church bells that are rung
|
47 |
+
when a person dies. Hence, the author is suggesting that we should not be curious
|
48 |
+
as to for whom the church bell is tolling for. It is for all of us.
|
49 |
+
- '[''Automatically.'', ''When connected to car Bluetooth and,'', ''Manually.'']'
|
50 |
+
- source_sentence: how long before chlamydia symptoms appear?
|
51 |
+
sentences:
|
52 |
+
- Most people who have chlamydia don't notice any symptoms. If you do get symptoms,
|
53 |
+
these usually appear between 1 and 3 weeks after having unprotected sex with an
|
54 |
+
infected person. For some people they don't develop until many months later. Sometimes
|
55 |
+
the symptoms can disappear after a few days.
|
56 |
+
- '[''Open the My Verizon app . ... '', ''Tap the Menu icon. ... '', ''Tap Manage
|
57 |
+
device for the appropriate mobile number. ... '', ''Tap Transfer content between
|
58 |
+
phones. ... '', ''Tap Start Transfer.'']'
|
59 |
+
- 'Psychiatrist vs Psychologist A psychiatrist is classed as a medical doctor, they
|
60 |
+
include a physical examination of symptoms in their assessment and are able to
|
61 |
+
prescribe medicine: a psychologist is also a doctor by virtue of their PHD level
|
62 |
+
qualification, but is not medically trained and cannot prescribe.'
|
63 |
+
- source_sentence: are you human korean novela?
|
64 |
+
sentences:
|
65 |
+
- Many cysts heal on their own, which means that conservative treatments like rest
|
66 |
+
and anti-inflammatory painkillers can often be enough to get rid of them. However,
|
67 |
+
in some cases, routine drainage of the sac may be necessary to reduce symptoms.
|
68 |
+
- A relative of European pear varieties like Bartlett and Anjou, the Asian pear
|
69 |
+
is great used in recipes or simply eaten out of hand. It retains a crispness that
|
70 |
+
works well in slaws and salads, and it holds its shape better than European pears
|
71 |
+
when baked and cooked.
|
72 |
+
- 'Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?)
|
73 |
+
is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon.
|
74 |
+
It aired on KBS2''s Mondays and Tuesdays at 22:00 (KST) time slot, from June 4
|
75 |
+
to August 7, 2018.'
|
76 |
+
datasets:
|
77 |
+
- sentence-transformers/gooaq
|
78 |
+
pipeline_tag: feature-extraction
|
79 |
+
library_name: sentence-transformers
|
80 |
+
metrics:
|
81 |
+
- dot_accuracy@1
|
82 |
+
- dot_accuracy@3
|
83 |
+
- dot_accuracy@5
|
84 |
+
- dot_accuracy@10
|
85 |
+
- dot_precision@1
|
86 |
+
- dot_precision@3
|
87 |
+
- dot_precision@5
|
88 |
+
- dot_precision@10
|
89 |
+
- dot_recall@1
|
90 |
+
- dot_recall@3
|
91 |
+
- dot_recall@5
|
92 |
+
- dot_recall@10
|
93 |
+
- dot_ndcg@10
|
94 |
+
- dot_mrr@10
|
95 |
+
- dot_map@100
|
96 |
+
- row_non_zero_mean_query
|
97 |
+
- row_sparsity_mean_query
|
98 |
+
- row_non_zero_mean_corpus
|
99 |
+
- row_sparsity_mean_corpus
|
100 |
+
co2_eq_emissions:
|
101 |
+
emissions: 467.36155743833086
|
102 |
+
energy_consumed: 1.2023646840981803
|
103 |
+
source: codecarbon
|
104 |
+
training_type: fine-tuning
|
105 |
+
on_cloud: false
|
106 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
107 |
+
ram_total_size: 31.777088165283203
|
108 |
+
hours_used: 3.125
|
109 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
110 |
+
model-index:
|
111 |
+
- name: Sparse CSR model trained on Natural Questions
|
112 |
+
results:
|
113 |
+
- task:
|
114 |
+
type: sparse-information-retrieval
|
115 |
+
name: Sparse Information Retrieval
|
116 |
+
dataset:
|
117 |
+
name: NanoMSMARCO 128
|
118 |
+
type: NanoMSMARCO_128
|
119 |
+
metrics:
|
120 |
+
- type: dot_accuracy@1
|
121 |
+
value: 0.42
|
122 |
+
name: Dot Accuracy@1
|
123 |
+
- type: dot_accuracy@3
|
124 |
+
value: 0.64
|
125 |
+
name: Dot Accuracy@3
|
126 |
+
- type: dot_accuracy@5
|
127 |
+
value: 0.68
|
128 |
+
name: Dot Accuracy@5
|
129 |
+
- type: dot_accuracy@10
|
130 |
+
value: 0.8
|
131 |
+
name: Dot Accuracy@10
|
132 |
+
- type: dot_precision@1
|
133 |
+
value: 0.42
|
134 |
+
name: Dot Precision@1
|
135 |
+
- type: dot_precision@3
|
136 |
+
value: 0.21333333333333332
|
137 |
+
name: Dot Precision@3
|
138 |
+
- type: dot_precision@5
|
139 |
+
value: 0.136
|
140 |
+
name: Dot Precision@5
|
141 |
+
- type: dot_precision@10
|
142 |
+
value: 0.08
|
143 |
+
name: Dot Precision@10
|
144 |
+
- type: dot_recall@1
|
145 |
+
value: 0.42
|
146 |
+
name: Dot Recall@1
|
147 |
+
- type: dot_recall@3
|
148 |
+
value: 0.64
|
149 |
+
name: Dot Recall@3
|
150 |
+
- type: dot_recall@5
|
151 |
+
value: 0.68
|
152 |
+
name: Dot Recall@5
|
153 |
+
- type: dot_recall@10
|
154 |
+
value: 0.8
|
155 |
+
name: Dot Recall@10
|
156 |
+
- type: dot_ndcg@10
|
157 |
+
value: 0.6079185617079585
|
158 |
+
name: Dot Ndcg@10
|
159 |
+
- type: dot_mrr@10
|
160 |
+
value: 0.5469047619047619
|
161 |
+
name: Dot Mrr@10
|
162 |
+
- type: dot_map@100
|
163 |
+
value: 0.5546949863343481
|
164 |
+
name: Dot Map@100
|
165 |
+
- type: row_non_zero_mean_query
|
166 |
+
value: 128.0
|
167 |
+
name: Row Non Zero Mean Query
|
168 |
+
- type: row_sparsity_mean_query
|
169 |
+
value: 0.96875
|
170 |
+
name: Row Sparsity Mean Query
|
171 |
+
- type: row_non_zero_mean_corpus
|
172 |
+
value: 128.0
|
173 |
+
name: Row Non Zero Mean Corpus
|
174 |
+
- type: row_sparsity_mean_corpus
|
175 |
+
value: 0.96875
|
176 |
+
name: Row Sparsity Mean Corpus
|
177 |
+
- task:
|
178 |
+
type: sparse-information-retrieval
|
179 |
+
name: Sparse Information Retrieval
|
180 |
+
dataset:
|
181 |
+
name: NanoNFCorpus 128
|
182 |
+
type: NanoNFCorpus_128
|
183 |
+
metrics:
|
184 |
+
- type: dot_accuracy@1
|
185 |
+
value: 0.28
|
186 |
+
name: Dot Accuracy@1
|
187 |
+
- type: dot_accuracy@3
|
188 |
+
value: 0.46
|
189 |
+
name: Dot Accuracy@3
|
190 |
+
- type: dot_accuracy@5
|
191 |
+
value: 0.58
|
192 |
+
name: Dot Accuracy@5
|
193 |
+
- type: dot_accuracy@10
|
194 |
+
value: 0.66
|
195 |
+
name: Dot Accuracy@10
|
196 |
+
- type: dot_precision@1
|
197 |
+
value: 0.28
|
198 |
+
name: Dot Precision@1
|
199 |
+
- type: dot_precision@3
|
200 |
+
value: 0.2866666666666667
|
201 |
+
name: Dot Precision@3
|
202 |
+
- type: dot_precision@5
|
203 |
+
value: 0.28
|
204 |
+
name: Dot Precision@5
|
205 |
+
- type: dot_precision@10
|
206 |
+
value: 0.24600000000000002
|
207 |
+
name: Dot Precision@10
|
208 |
+
- type: dot_recall@1
|
209 |
+
value: 0.010077778443246685
|
210 |
+
name: Dot Recall@1
|
211 |
+
- type: dot_recall@3
|
212 |
+
value: 0.04965300165842144
|
213 |
+
name: Dot Recall@3
|
214 |
+
- type: dot_recall@5
|
215 |
+
value: 0.07680443441830657
|
216 |
+
name: Dot Recall@5
|
217 |
+
- type: dot_recall@10
|
218 |
+
value: 0.10785346110615711
|
219 |
+
name: Dot Recall@10
|
220 |
+
- type: dot_ndcg@10
|
221 |
+
value: 0.27112973349418856
|
222 |
+
name: Dot Ndcg@10
|
223 |
+
- type: dot_mrr@10
|
224 |
+
value: 0.3951904761904761
|
225 |
+
name: Dot Mrr@10
|
226 |
+
- type: dot_map@100
|
227 |
+
value: 0.10882673834779542
|
228 |
+
name: Dot Map@100
|
229 |
+
- type: row_non_zero_mean_query
|
230 |
+
value: 128.0
|
231 |
+
name: Row Non Zero Mean Query
|
232 |
+
- type: row_sparsity_mean_query
|
233 |
+
value: 0.96875
|
234 |
+
name: Row Sparsity Mean Query
|
235 |
+
- type: row_non_zero_mean_corpus
|
236 |
+
value: 128.0
|
237 |
+
name: Row Non Zero Mean Corpus
|
238 |
+
- type: row_sparsity_mean_corpus
|
239 |
+
value: 0.96875
|
240 |
+
name: Row Sparsity Mean Corpus
|
241 |
+
- task:
|
242 |
+
type: sparse-information-retrieval
|
243 |
+
name: Sparse Information Retrieval
|
244 |
+
dataset:
|
245 |
+
name: NanoNQ 128
|
246 |
+
type: NanoNQ_128
|
247 |
+
metrics:
|
248 |
+
- type: dot_accuracy@1
|
249 |
+
value: 0.46
|
250 |
+
name: Dot Accuracy@1
|
251 |
+
- type: dot_accuracy@3
|
252 |
+
value: 0.62
|
253 |
+
name: Dot Accuracy@3
|
254 |
+
- type: dot_accuracy@5
|
255 |
+
value: 0.7
|
256 |
+
name: Dot Accuracy@5
|
257 |
+
- type: dot_accuracy@10
|
258 |
+
value: 0.82
|
259 |
+
name: Dot Accuracy@10
|
260 |
+
- type: dot_precision@1
|
261 |
+
value: 0.46
|
262 |
+
name: Dot Precision@1
|
263 |
+
- type: dot_precision@3
|
264 |
+
value: 0.20666666666666667
|
265 |
+
name: Dot Precision@3
|
266 |
+
- type: dot_precision@5
|
267 |
+
value: 0.14
|
268 |
+
name: Dot Precision@5
|
269 |
+
- type: dot_precision@10
|
270 |
+
value: 0.08199999999999999
|
271 |
+
name: Dot Precision@10
|
272 |
+
- type: dot_recall@1
|
273 |
+
value: 0.44
|
274 |
+
name: Dot Recall@1
|
275 |
+
- type: dot_recall@3
|
276 |
+
value: 0.58
|
277 |
+
name: Dot Recall@3
|
278 |
+
- type: dot_recall@5
|
279 |
+
value: 0.65
|
280 |
+
name: Dot Recall@5
|
281 |
+
- type: dot_recall@10
|
282 |
+
value: 0.76
|
283 |
+
name: Dot Recall@10
|
284 |
+
- type: dot_ndcg@10
|
285 |
+
value: 0.5976862103963738
|
286 |
+
name: Dot Ndcg@10
|
287 |
+
- type: dot_mrr@10
|
288 |
+
value: 0.5692222222222223
|
289 |
+
name: Dot Mrr@10
|
290 |
+
- type: dot_map@100
|
291 |
+
value: 0.5513454286143362
|
292 |
+
name: Dot Map@100
|
293 |
+
- type: row_non_zero_mean_query
|
294 |
+
value: 128.0
|
295 |
+
name: Row Non Zero Mean Query
|
296 |
+
- type: row_sparsity_mean_query
|
297 |
+
value: 0.96875
|
298 |
+
name: Row Sparsity Mean Query
|
299 |
+
- type: row_non_zero_mean_corpus
|
300 |
+
value: 128.0
|
301 |
+
name: Row Non Zero Mean Corpus
|
302 |
+
- type: row_sparsity_mean_corpus
|
303 |
+
value: 0.96875
|
304 |
+
name: Row Sparsity Mean Corpus
|
305 |
+
- task:
|
306 |
+
type: sparse-nano-beir
|
307 |
+
name: Sparse Nano BEIR
|
308 |
+
dataset:
|
309 |
+
name: NanoBEIR mean 128
|
310 |
+
type: NanoBEIR_mean_128
|
311 |
+
metrics:
|
312 |
+
- type: dot_accuracy@1
|
313 |
+
value: 0.38666666666666666
|
314 |
+
name: Dot Accuracy@1
|
315 |
+
- type: dot_accuracy@3
|
316 |
+
value: 0.5733333333333334
|
317 |
+
name: Dot Accuracy@3
|
318 |
+
- type: dot_accuracy@5
|
319 |
+
value: 0.6533333333333333
|
320 |
+
name: Dot Accuracy@5
|
321 |
+
- type: dot_accuracy@10
|
322 |
+
value: 0.7599999999999999
|
323 |
+
name: Dot Accuracy@10
|
324 |
+
- type: dot_precision@1
|
325 |
+
value: 0.38666666666666666
|
326 |
+
name: Dot Precision@1
|
327 |
+
- type: dot_precision@3
|
328 |
+
value: 0.23555555555555555
|
329 |
+
name: Dot Precision@3
|
330 |
+
- type: dot_precision@5
|
331 |
+
value: 0.18533333333333335
|
332 |
+
name: Dot Precision@5
|
333 |
+
- type: dot_precision@10
|
334 |
+
value: 0.136
|
335 |
+
name: Dot Precision@10
|
336 |
+
- type: dot_recall@1
|
337 |
+
value: 0.2900259261477489
|
338 |
+
name: Dot Recall@1
|
339 |
+
- type: dot_recall@3
|
340 |
+
value: 0.4232176672194738
|
341 |
+
name: Dot Recall@3
|
342 |
+
- type: dot_recall@5
|
343 |
+
value: 0.4689348114727689
|
344 |
+
name: Dot Recall@5
|
345 |
+
- type: dot_recall@10
|
346 |
+
value: 0.5559511537020524
|
347 |
+
name: Dot Recall@10
|
348 |
+
- type: dot_ndcg@10
|
349 |
+
value: 0.49224483519950696
|
350 |
+
name: Dot Ndcg@10
|
351 |
+
- type: dot_mrr@10
|
352 |
+
value: 0.5037724867724868
|
353 |
+
name: Dot Mrr@10
|
354 |
+
- type: dot_map@100
|
355 |
+
value: 0.4049557177654933
|
356 |
+
name: Dot Map@100
|
357 |
+
- type: row_non_zero_mean_query
|
358 |
+
value: 128.0
|
359 |
+
name: Row Non Zero Mean Query
|
360 |
+
- type: row_sparsity_mean_query
|
361 |
+
value: 0.96875
|
362 |
+
name: Row Sparsity Mean Query
|
363 |
+
- type: row_non_zero_mean_corpus
|
364 |
+
value: 128.0
|
365 |
+
name: Row Non Zero Mean Corpus
|
366 |
+
- type: row_sparsity_mean_corpus
|
367 |
+
value: 0.96875
|
368 |
+
name: Row Sparsity Mean Corpus
|
369 |
+
- task:
|
370 |
+
type: sparse-information-retrieval
|
371 |
+
name: Sparse Information Retrieval
|
372 |
+
dataset:
|
373 |
+
name: NanoMSMARCO 256
|
374 |
+
type: NanoMSMARCO_256
|
375 |
+
metrics:
|
376 |
+
- type: dot_accuracy@1
|
377 |
+
value: 0.42
|
378 |
+
name: Dot Accuracy@1
|
379 |
+
- type: dot_accuracy@3
|
380 |
+
value: 0.7
|
381 |
+
name: Dot Accuracy@3
|
382 |
+
- type: dot_accuracy@5
|
383 |
+
value: 0.76
|
384 |
+
name: Dot Accuracy@5
|
385 |
+
- type: dot_accuracy@10
|
386 |
+
value: 0.84
|
387 |
+
name: Dot Accuracy@10
|
388 |
+
- type: dot_precision@1
|
389 |
+
value: 0.42
|
390 |
+
name: Dot Precision@1
|
391 |
+
- type: dot_precision@3
|
392 |
+
value: 0.2333333333333333
|
393 |
+
name: Dot Precision@3
|
394 |
+
- type: dot_precision@5
|
395 |
+
value: 0.15200000000000002
|
396 |
+
name: Dot Precision@5
|
397 |
+
- type: dot_precision@10
|
398 |
+
value: 0.08399999999999999
|
399 |
+
name: Dot Precision@10
|
400 |
+
- type: dot_recall@1
|
401 |
+
value: 0.42
|
402 |
+
name: Dot Recall@1
|
403 |
+
- type: dot_recall@3
|
404 |
+
value: 0.7
|
405 |
+
name: Dot Recall@3
|
406 |
+
- type: dot_recall@5
|
407 |
+
value: 0.76
|
408 |
+
name: Dot Recall@5
|
409 |
+
- type: dot_recall@10
|
410 |
+
value: 0.84
|
411 |
+
name: Dot Recall@10
|
412 |
+
- type: dot_ndcg@10
|
413 |
+
value: 0.6326016391887893
|
414 |
+
name: Dot Ndcg@10
|
415 |
+
- type: dot_mrr@10
|
416 |
+
value: 0.566111111111111
|
417 |
+
name: Dot Mrr@10
|
418 |
+
- type: dot_map@100
|
419 |
+
value: 0.5727341193854673
|
420 |
+
name: Dot Map@100
|
421 |
+
- type: row_non_zero_mean_query
|
422 |
+
value: 256.0
|
423 |
+
name: Row Non Zero Mean Query
|
424 |
+
- type: row_sparsity_mean_query
|
425 |
+
value: 0.9375
|
426 |
+
name: Row Sparsity Mean Query
|
427 |
+
- type: row_non_zero_mean_corpus
|
428 |
+
value: 256.0
|
429 |
+
name: Row Non Zero Mean Corpus
|
430 |
+
- type: row_sparsity_mean_corpus
|
431 |
+
value: 0.9375
|
432 |
+
name: Row Sparsity Mean Corpus
|
433 |
+
- task:
|
434 |
+
type: sparse-information-retrieval
|
435 |
+
name: Sparse Information Retrieval
|
436 |
+
dataset:
|
437 |
+
name: NanoNFCorpus 256
|
438 |
+
type: NanoNFCorpus_256
|
439 |
+
metrics:
|
440 |
+
- type: dot_accuracy@1
|
441 |
+
value: 0.32
|
442 |
+
name: Dot Accuracy@1
|
443 |
+
- type: dot_accuracy@3
|
444 |
+
value: 0.56
|
445 |
+
name: Dot Accuracy@3
|
446 |
+
- type: dot_accuracy@5
|
447 |
+
value: 0.62
|
448 |
+
name: Dot Accuracy@5
|
449 |
+
- type: dot_accuracy@10
|
450 |
+
value: 0.7
|
451 |
+
name: Dot Accuracy@10
|
452 |
+
- type: dot_precision@1
|
453 |
+
value: 0.32
|
454 |
+
name: Dot Precision@1
|
455 |
+
- type: dot_precision@3
|
456 |
+
value: 0.31999999999999995
|
457 |
+
name: Dot Precision@3
|
458 |
+
- type: dot_precision@5
|
459 |
+
value: 0.316
|
460 |
+
name: Dot Precision@5
|
461 |
+
- type: dot_precision@10
|
462 |
+
value: 0.262
|
463 |
+
name: Dot Precision@10
|
464 |
+
- type: dot_recall@1
|
465 |
+
value: 0.030392237560226815
|
466 |
+
name: Dot Recall@1
|
467 |
+
- type: dot_recall@3
|
468 |
+
value: 0.0717373009745601
|
469 |
+
name: Dot Recall@3
|
470 |
+
- type: dot_recall@5
|
471 |
+
value: 0.09312218308574575
|
472 |
+
name: Dot Recall@5
|
473 |
+
- type: dot_recall@10
|
474 |
+
value: 0.133341363492939
|
475 |
+
name: Dot Recall@10
|
476 |
+
- type: dot_ndcg@10
|
477 |
+
value: 0.30709320262394824
|
478 |
+
name: Dot Ndcg@10
|
479 |
+
- type: dot_mrr@10
|
480 |
+
value: 0.45252380952380944
|
481 |
+
name: Dot Mrr@10
|
482 |
+
- type: dot_map@100
|
483 |
+
value: 0.14302697817666413
|
484 |
+
name: Dot Map@100
|
485 |
+
- type: row_non_zero_mean_query
|
486 |
+
value: 256.0
|
487 |
+
name: Row Non Zero Mean Query
|
488 |
+
- type: row_sparsity_mean_query
|
489 |
+
value: 0.9375
|
490 |
+
name: Row Sparsity Mean Query
|
491 |
+
- type: row_non_zero_mean_corpus
|
492 |
+
value: 256.0
|
493 |
+
name: Row Non Zero Mean Corpus
|
494 |
+
- type: row_sparsity_mean_corpus
|
495 |
+
value: 0.9375
|
496 |
+
name: Row Sparsity Mean Corpus
|
497 |
+
- task:
|
498 |
+
type: sparse-information-retrieval
|
499 |
+
name: Sparse Information Retrieval
|
500 |
+
dataset:
|
501 |
+
name: NanoNQ 256
|
502 |
+
type: NanoNQ_256
|
503 |
+
metrics:
|
504 |
+
- type: dot_accuracy@1
|
505 |
+
value: 0.42
|
506 |
+
name: Dot Accuracy@1
|
507 |
+
- type: dot_accuracy@3
|
508 |
+
value: 0.64
|
509 |
+
name: Dot Accuracy@3
|
510 |
+
- type: dot_accuracy@5
|
511 |
+
value: 0.68
|
512 |
+
name: Dot Accuracy@5
|
513 |
+
- type: dot_accuracy@10
|
514 |
+
value: 0.84
|
515 |
+
name: Dot Accuracy@10
|
516 |
+
- type: dot_precision@1
|
517 |
+
value: 0.42
|
518 |
+
name: Dot Precision@1
|
519 |
+
- type: dot_precision@3
|
520 |
+
value: 0.22
|
521 |
+
name: Dot Precision@3
|
522 |
+
- type: dot_precision@5
|
523 |
+
value: 0.14
|
524 |
+
name: Dot Precision@5
|
525 |
+
- type: dot_precision@10
|
526 |
+
value: 0.088
|
527 |
+
name: Dot Precision@10
|
528 |
+
- type: dot_recall@1
|
529 |
+
value: 0.4
|
530 |
+
name: Dot Recall@1
|
531 |
+
- type: dot_recall@3
|
532 |
+
value: 0.6
|
533 |
+
name: Dot Recall@3
|
534 |
+
- type: dot_recall@5
|
535 |
+
value: 0.63
|
536 |
+
name: Dot Recall@5
|
537 |
+
- type: dot_recall@10
|
538 |
+
value: 0.79
|
539 |
+
name: Dot Recall@10
|
540 |
+
- type: dot_ndcg@10
|
541 |
+
value: 0.594269599796927
|
542 |
+
name: Dot Ndcg@10
|
543 |
+
- type: dot_mrr@10
|
544 |
+
value: 0.5505952380952379
|
545 |
+
name: Dot Mrr@10
|
546 |
+
- type: dot_map@100
|
547 |
+
value: 0.5330295920949546
|
548 |
+
name: Dot Map@100
|
549 |
+
- type: row_non_zero_mean_query
|
550 |
+
value: 256.0
|
551 |
+
name: Row Non Zero Mean Query
|
552 |
+
- type: row_sparsity_mean_query
|
553 |
+
value: 0.9375
|
554 |
+
name: Row Sparsity Mean Query
|
555 |
+
- type: row_non_zero_mean_corpus
|
556 |
+
value: 256.0
|
557 |
+
name: Row Non Zero Mean Corpus
|
558 |
+
- type: row_sparsity_mean_corpus
|
559 |
+
value: 0.9375
|
560 |
+
name: Row Sparsity Mean Corpus
|
561 |
+
- task:
|
562 |
+
type: sparse-nano-beir
|
563 |
+
name: Sparse Nano BEIR
|
564 |
+
dataset:
|
565 |
+
name: NanoBEIR mean 256
|
566 |
+
type: NanoBEIR_mean_256
|
567 |
+
metrics:
|
568 |
+
- type: dot_accuracy@1
|
569 |
+
value: 0.38666666666666666
|
570 |
+
name: Dot Accuracy@1
|
571 |
+
- type: dot_accuracy@3
|
572 |
+
value: 0.6333333333333333
|
573 |
+
name: Dot Accuracy@3
|
574 |
+
- type: dot_accuracy@5
|
575 |
+
value: 0.6866666666666666
|
576 |
+
name: Dot Accuracy@5
|
577 |
+
- type: dot_accuracy@10
|
578 |
+
value: 0.7933333333333333
|
579 |
+
name: Dot Accuracy@10
|
580 |
+
- type: dot_precision@1
|
581 |
+
value: 0.38666666666666666
|
582 |
+
name: Dot Precision@1
|
583 |
+
- type: dot_precision@3
|
584 |
+
value: 0.2577777777777777
|
585 |
+
name: Dot Precision@3
|
586 |
+
- type: dot_precision@5
|
587 |
+
value: 0.2026666666666667
|
588 |
+
name: Dot Precision@5
|
589 |
+
- type: dot_precision@10
|
590 |
+
value: 0.14466666666666664
|
591 |
+
name: Dot Precision@10
|
592 |
+
- type: dot_recall@1
|
593 |
+
value: 0.28346407918674227
|
594 |
+
name: Dot Recall@1
|
595 |
+
- type: dot_recall@3
|
596 |
+
value: 0.45724576699152
|
597 |
+
name: Dot Recall@3
|
598 |
+
- type: dot_recall@5
|
599 |
+
value: 0.4943740610285819
|
600 |
+
name: Dot Recall@5
|
601 |
+
- type: dot_recall@10
|
602 |
+
value: 0.5877804544976463
|
603 |
+
name: Dot Recall@10
|
604 |
+
- type: dot_ndcg@10
|
605 |
+
value: 0.5113214805365548
|
606 |
+
name: Dot Ndcg@10
|
607 |
+
- type: dot_mrr@10
|
608 |
+
value: 0.5230767195767194
|
609 |
+
name: Dot Mrr@10
|
610 |
+
- type: dot_map@100
|
611 |
+
value: 0.41626356321902863
|
612 |
+
name: Dot Map@100
|
613 |
+
- type: row_non_zero_mean_query
|
614 |
+
value: 256.0
|
615 |
+
name: Row Non Zero Mean Query
|
616 |
+
- type: row_sparsity_mean_query
|
617 |
+
value: 0.9375
|
618 |
+
name: Row Sparsity Mean Query
|
619 |
+
- type: row_non_zero_mean_corpus
|
620 |
+
value: 256.0
|
621 |
+
name: Row Non Zero Mean Corpus
|
622 |
+
- type: row_sparsity_mean_corpus
|
623 |
+
value: 0.9375
|
624 |
+
name: Row Sparsity Mean Corpus
|
625 |
+
---
|
626 |
+
|
627 |
+
# Sparse CSR model trained on Natural Questions
|
628 |
+
|
629 |
+
This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
630 |
+
|
631 |
+
## Model Details
|
632 |
+
|
633 |
+
### Model Description
|
634 |
+
- **Model Type:** CSR Sparse Encoder
|
635 |
+
- **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 -->
|
636 |
+
- **Maximum Sequence Length:** 512 tokens
|
637 |
+
- **Output Dimensionality:** 4096 dimensions
|
638 |
+
- **Similarity Function:** Dot Product
|
639 |
+
- **Training Dataset:**
|
640 |
+
- [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
|
641 |
+
- **Language:** en
|
642 |
+
- **License:** apache-2.0
|
643 |
+
|
644 |
+
### Model Sources
|
645 |
+
|
646 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
647 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
648 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
649 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
650 |
+
|
651 |
+
### Full Model Architecture
|
652 |
+
|
653 |
+
```
|
654 |
+
SparseEncoder(
|
655 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
656 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
657 |
+
(2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
|
658 |
+
)
|
659 |
+
```
|
660 |
+
|
661 |
+
## Usage
|
662 |
+
|
663 |
+
### Direct Usage (Sentence Transformers)
|
664 |
+
|
665 |
+
First install the Sentence Transformers library:
|
666 |
+
|
667 |
+
```bash
|
668 |
+
pip install -U sentence-transformers
|
669 |
+
```
|
670 |
+
|
671 |
+
Then you can load this model and run inference.
|
672 |
+
```python
|
673 |
+
from sentence_transformers import SparseEncoder
|
674 |
+
|
675 |
+
# Download from the 🤗 Hub
|
676 |
+
model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-gooaq-2e-4")
|
677 |
+
# Run inference
|
678 |
+
sentences = [
|
679 |
+
'are you human korean novela?',
|
680 |
+
"Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?) is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon. It aired on KBS2's Mondays and Tuesdays at 22:00 (KST) time slot, from June 4 to August 7, 2018.",
|
681 |
+
'A relative of European pear varieties like Bartlett and Anjou, the Asian pear is great used in recipes or simply eaten out of hand. It retains a crispness that works well in slaws and salads, and it holds its shape better than European pears when baked and cooked.',
|
682 |
+
]
|
683 |
+
embeddings = model.encode(sentences)
|
684 |
+
print(embeddings.shape)
|
685 |
+
# (3, 4096)
|
686 |
+
|
687 |
+
# Get the similarity scores for the embeddings
|
688 |
+
similarities = model.similarity(embeddings, embeddings)
|
689 |
+
print(similarities.shape)
|
690 |
+
# [3, 3]
|
691 |
+
```
|
692 |
+
|
693 |
+
<!--
|
694 |
+
### Direct Usage (Transformers)
|
695 |
+
|
696 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
697 |
+
|
698 |
+
</details>
|
699 |
+
-->
|
700 |
+
|
701 |
+
<!--
|
702 |
+
### Downstream Usage (Sentence Transformers)
|
703 |
+
|
704 |
+
You can finetune this model on your own dataset.
|
705 |
+
|
706 |
+
<details><summary>Click to expand</summary>
|
707 |
+
|
708 |
+
</details>
|
709 |
+
-->
|
710 |
+
|
711 |
+
<!--
|
712 |
+
### Out-of-Scope Use
|
713 |
+
|
714 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
715 |
+
-->
|
716 |
+
|
717 |
+
## Evaluation
|
718 |
+
|
719 |
+
### Metrics
|
720 |
+
|
721 |
+
#### Sparse Information Retrieval
|
722 |
+
|
723 |
+
* Datasets: `NanoMSMARCO_128`, `NanoNFCorpus_128` and `NanoNQ_128`
|
724 |
+
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
|
725 |
+
```json
|
726 |
+
{
|
727 |
+
"max_active_dims": 128
|
728 |
+
}
|
729 |
+
```
|
730 |
+
|
731 |
+
| Metric | NanoMSMARCO_128 | NanoNFCorpus_128 | NanoNQ_128 |
|
732 |
+
|:-------------------------|:----------------|:-----------------|:-----------|
|
733 |
+
| dot_accuracy@1 | 0.42 | 0.28 | 0.46 |
|
734 |
+
| dot_accuracy@3 | 0.64 | 0.46 | 0.62 |
|
735 |
+
| dot_accuracy@5 | 0.68 | 0.58 | 0.7 |
|
736 |
+
| dot_accuracy@10 | 0.8 | 0.66 | 0.82 |
|
737 |
+
| dot_precision@1 | 0.42 | 0.28 | 0.46 |
|
738 |
+
| dot_precision@3 | 0.2133 | 0.2867 | 0.2067 |
|
739 |
+
| dot_precision@5 | 0.136 | 0.28 | 0.14 |
|
740 |
+
| dot_precision@10 | 0.08 | 0.246 | 0.082 |
|
741 |
+
| dot_recall@1 | 0.42 | 0.0101 | 0.44 |
|
742 |
+
| dot_recall@3 | 0.64 | 0.0497 | 0.58 |
|
743 |
+
| dot_recall@5 | 0.68 | 0.0768 | 0.65 |
|
744 |
+
| dot_recall@10 | 0.8 | 0.1079 | 0.76 |
|
745 |
+
| **dot_ndcg@10** | **0.6079** | **0.2711** | **0.5977** |
|
746 |
+
| dot_mrr@10 | 0.5469 | 0.3952 | 0.5692 |
|
747 |
+
| dot_map@100 | 0.5547 | 0.1088 | 0.5513 |
|
748 |
+
| row_non_zero_mean_query | 128.0 | 128.0 | 128.0 |
|
749 |
+
| row_sparsity_mean_query | 0.9688 | 0.9688 | 0.9688 |
|
750 |
+
| row_non_zero_mean_corpus | 128.0 | 128.0 | 128.0 |
|
751 |
+
| row_sparsity_mean_corpus | 0.9688 | 0.9688 | 0.9688 |
|
752 |
+
|
753 |
+
#### Sparse Nano BEIR
|
754 |
+
|
755 |
+
* Dataset: `NanoBEIR_mean_128`
|
756 |
+
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
757 |
+
```json
|
758 |
+
{
|
759 |
+
"dataset_names": [
|
760 |
+
"msmarco",
|
761 |
+
"nfcorpus",
|
762 |
+
"nq"
|
763 |
+
],
|
764 |
+
"max_active_dims": 128
|
765 |
+
}
|
766 |
+
```
|
767 |
+
|
768 |
+
| Metric | Value |
|
769 |
+
|:-------------------------|:-----------|
|
770 |
+
| dot_accuracy@1 | 0.3867 |
|
771 |
+
| dot_accuracy@3 | 0.5733 |
|
772 |
+
| dot_accuracy@5 | 0.6533 |
|
773 |
+
| dot_accuracy@10 | 0.76 |
|
774 |
+
| dot_precision@1 | 0.3867 |
|
775 |
+
| dot_precision@3 | 0.2356 |
|
776 |
+
| dot_precision@5 | 0.1853 |
|
777 |
+
| dot_precision@10 | 0.136 |
|
778 |
+
| dot_recall@1 | 0.29 |
|
779 |
+
| dot_recall@3 | 0.4232 |
|
780 |
+
| dot_recall@5 | 0.4689 |
|
781 |
+
| dot_recall@10 | 0.556 |
|
782 |
+
| **dot_ndcg@10** | **0.4922** |
|
783 |
+
| dot_mrr@10 | 0.5038 |
|
784 |
+
| dot_map@100 | 0.405 |
|
785 |
+
| row_non_zero_mean_query | 128.0 |
|
786 |
+
| row_sparsity_mean_query | 0.9688 |
|
787 |
+
| row_non_zero_mean_corpus | 128.0 |
|
788 |
+
| row_sparsity_mean_corpus | 0.9688 |
|
789 |
+
|
790 |
+
#### Sparse Information Retrieval
|
791 |
+
|
792 |
+
* Datasets: `NanoMSMARCO_256`, `NanoNFCorpus_256` and `NanoNQ_256`
|
793 |
+
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
|
794 |
+
```json
|
795 |
+
{
|
796 |
+
"max_active_dims": 256
|
797 |
+
}
|
798 |
+
```
|
799 |
+
|
800 |
+
| Metric | NanoMSMARCO_256 | NanoNFCorpus_256 | NanoNQ_256 |
|
801 |
+
|:-------------------------|:----------------|:-----------------|:-----------|
|
802 |
+
| dot_accuracy@1 | 0.42 | 0.32 | 0.42 |
|
803 |
+
| dot_accuracy@3 | 0.7 | 0.56 | 0.64 |
|
804 |
+
| dot_accuracy@5 | 0.76 | 0.62 | 0.68 |
|
805 |
+
| dot_accuracy@10 | 0.84 | 0.7 | 0.84 |
|
806 |
+
| dot_precision@1 | 0.42 | 0.32 | 0.42 |
|
807 |
+
| dot_precision@3 | 0.2333 | 0.32 | 0.22 |
|
808 |
+
| dot_precision@5 | 0.152 | 0.316 | 0.14 |
|
809 |
+
| dot_precision@10 | 0.084 | 0.262 | 0.088 |
|
810 |
+
| dot_recall@1 | 0.42 | 0.0304 | 0.4 |
|
811 |
+
| dot_recall@3 | 0.7 | 0.0717 | 0.6 |
|
812 |
+
| dot_recall@5 | 0.76 | 0.0931 | 0.63 |
|
813 |
+
| dot_recall@10 | 0.84 | 0.1333 | 0.79 |
|
814 |
+
| **dot_ndcg@10** | **0.6326** | **0.3071** | **0.5943** |
|
815 |
+
| dot_mrr@10 | 0.5661 | 0.4525 | 0.5506 |
|
816 |
+
| dot_map@100 | 0.5727 | 0.143 | 0.533 |
|
817 |
+
| row_non_zero_mean_query | 256.0 | 256.0 | 256.0 |
|
818 |
+
| row_sparsity_mean_query | 0.9375 | 0.9375 | 0.9375 |
|
819 |
+
| row_non_zero_mean_corpus | 256.0 | 256.0 | 256.0 |
|
820 |
+
| row_sparsity_mean_corpus | 0.9375 | 0.9375 | 0.9375 |
|
821 |
+
|
822 |
+
#### Sparse Nano BEIR
|
823 |
+
|
824 |
+
* Dataset: `NanoBEIR_mean_256`
|
825 |
+
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
|
826 |
+
```json
|
827 |
+
{
|
828 |
+
"dataset_names": [
|
829 |
+
"msmarco",
|
830 |
+
"nfcorpus",
|
831 |
+
"nq"
|
832 |
+
],
|
833 |
+
"max_active_dims": 256
|
834 |
+
}
|
835 |
+
```
|
836 |
+
|
837 |
+
| Metric | Value |
|
838 |
+
|:-------------------------|:-----------|
|
839 |
+
| dot_accuracy@1 | 0.3867 |
|
840 |
+
| dot_accuracy@3 | 0.6333 |
|
841 |
+
| dot_accuracy@5 | 0.6867 |
|
842 |
+
| dot_accuracy@10 | 0.7933 |
|
843 |
+
| dot_precision@1 | 0.3867 |
|
844 |
+
| dot_precision@3 | 0.2578 |
|
845 |
+
| dot_precision@5 | 0.2027 |
|
846 |
+
| dot_precision@10 | 0.1447 |
|
847 |
+
| dot_recall@1 | 0.2835 |
|
848 |
+
| dot_recall@3 | 0.4572 |
|
849 |
+
| dot_recall@5 | 0.4944 |
|
850 |
+
| dot_recall@10 | 0.5878 |
|
851 |
+
| **dot_ndcg@10** | **0.5113** |
|
852 |
+
| dot_mrr@10 | 0.5231 |
|
853 |
+
| dot_map@100 | 0.4163 |
|
854 |
+
| row_non_zero_mean_query | 256.0 |
|
855 |
+
| row_sparsity_mean_query | 0.9375 |
|
856 |
+
| row_non_zero_mean_corpus | 256.0 |
|
857 |
+
| row_sparsity_mean_corpus | 0.9375 |
|
858 |
+
|
859 |
+
<!--
|
860 |
+
## Bias, Risks and Limitations
|
861 |
+
|
862 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
863 |
+
-->
|
864 |
+
|
865 |
+
<!--
|
866 |
+
### Recommendations
|
867 |
+
|
868 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
869 |
+
-->
|
870 |
+
|
871 |
+
## Training Details
|
872 |
+
|
873 |
+
### Training Dataset
|
874 |
+
|
875 |
+
#### gooaq
|
876 |
+
|
877 |
+
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
|
878 |
+
* Size: 3,011,496 training samples
|
879 |
+
* Columns: <code>question</code> and <code>answer</code>
|
880 |
+
* Approximate statistics based on the first 1000 samples:
|
881 |
+
| | question | answer |
|
882 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
883 |
+
| type | string | string |
|
884 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 11.87 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.09 tokens</li><li>max: 201 tokens</li></ul> |
|
885 |
+
* Samples:
|
886 |
+
| question | answer |
|
887 |
+
|:-----------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
888 |
+
| <code>what is the difference between clay and mud mask?</code> | <code>The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes.</code> |
|
889 |
+
| <code>myki how much on card?</code> | <code>A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007.</code> |
|
890 |
+
| <code>how to find out if someone blocked your phone number on iphone?</code> | <code>If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked.</code> |
|
891 |
+
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
|
892 |
+
```json
|
893 |
+
{
|
894 |
+
"beta": 0.1,
|
895 |
+
"gamma": 1.0,
|
896 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
|
897 |
+
}
|
898 |
+
```
|
899 |
+
|
900 |
+
### Evaluation Dataset
|
901 |
+
|
902 |
+
#### gooaq
|
903 |
+
|
904 |
+
* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
|
905 |
+
* Size: 1,000 evaluation samples
|
906 |
+
* Columns: <code>question</code> and <code>answer</code>
|
907 |
+
* Approximate statistics based on the first 1000 samples:
|
908 |
+
| | question | answer |
|
909 |
+
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
|
910 |
+
| type | string | string |
|
911 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 11.88 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 61.03 tokens</li><li>max: 127 tokens</li></ul> |
|
912 |
+
* Samples:
|
913 |
+
| question | answer |
|
914 |
+
|:-----------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
915 |
+
| <code>how do i program my directv remote with my tv?</code> | <code>['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.']</code> |
|
916 |
+
| <code>are rodrigues fruit bats nocturnal?</code> | <code>Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night.</code> |
|
917 |
+
| <code>why does your heart rate increase during exercise bbc bitesize?</code> | <code>During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it.</code> |
|
918 |
+
* Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters:
|
919 |
+
```json
|
920 |
+
{
|
921 |
+
"beta": 0.1,
|
922 |
+
"gamma": 1.0,
|
923 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')"
|
924 |
+
}
|
925 |
+
```
|
926 |
+
|
927 |
+
### Training Hyperparameters
|
928 |
+
#### Non-Default Hyperparameters
|
929 |
+
|
930 |
+
- `eval_strategy`: steps
|
931 |
+
- `per_device_train_batch_size`: 64
|
932 |
+
- `per_device_eval_batch_size`: 64
|
933 |
+
- `learning_rate`: 0.0002
|
934 |
+
- `num_train_epochs`: 1
|
935 |
+
- `warmup_ratio`: 0.1
|
936 |
+
- `bf16`: True
|
937 |
+
- `load_best_model_at_end`: True
|
938 |
+
- `batch_sampler`: no_duplicates
|
939 |
+
|
940 |
+
#### All Hyperparameters
|
941 |
+
<details><summary>Click to expand</summary>
|
942 |
+
|
943 |
+
- `overwrite_output_dir`: False
|
944 |
+
- `do_predict`: False
|
945 |
+
- `eval_strategy`: steps
|
946 |
+
- `prediction_loss_only`: True
|
947 |
+
- `per_device_train_batch_size`: 64
|
948 |
+
- `per_device_eval_batch_size`: 64
|
949 |
+
- `per_gpu_train_batch_size`: None
|
950 |
+
- `per_gpu_eval_batch_size`: None
|
951 |
+
- `gradient_accumulation_steps`: 1
|
952 |
+
- `eval_accumulation_steps`: None
|
953 |
+
- `torch_empty_cache_steps`: None
|
954 |
+
- `learning_rate`: 0.0002
|
955 |
+
- `weight_decay`: 0.0
|
956 |
+
- `adam_beta1`: 0.9
|
957 |
+
- `adam_beta2`: 0.999
|
958 |
+
- `adam_epsilon`: 1e-08
|
959 |
+
- `max_grad_norm`: 1.0
|
960 |
+
- `num_train_epochs`: 1
|
961 |
+
- `max_steps`: -1
|
962 |
+
- `lr_scheduler_type`: linear
|
963 |
+
- `lr_scheduler_kwargs`: {}
|
964 |
+
- `warmup_ratio`: 0.1
|
965 |
+
- `warmup_steps`: 0
|
966 |
+
- `log_level`: passive
|
967 |
+
- `log_level_replica`: warning
|
968 |
+
- `log_on_each_node`: True
|
969 |
+
- `logging_nan_inf_filter`: True
|
970 |
+
- `save_safetensors`: True
|
971 |
+
- `save_on_each_node`: False
|
972 |
+
- `save_only_model`: False
|
973 |
+
- `restore_callback_states_from_checkpoint`: False
|
974 |
+
- `no_cuda`: False
|
975 |
+
- `use_cpu`: False
|
976 |
+
- `use_mps_device`: False
|
977 |
+
- `seed`: 42
|
978 |
+
- `data_seed`: None
|
979 |
+
- `jit_mode_eval`: False
|
980 |
+
- `use_ipex`: False
|
981 |
+
- `bf16`: True
|
982 |
+
- `fp16`: False
|
983 |
+
- `fp16_opt_level`: O1
|
984 |
+
- `half_precision_backend`: auto
|
985 |
+
- `bf16_full_eval`: False
|
986 |
+
- `fp16_full_eval`: False
|
987 |
+
- `tf32`: None
|
988 |
+
- `local_rank`: 0
|
989 |
+
- `ddp_backend`: None
|
990 |
+
- `tpu_num_cores`: None
|
991 |
+
- `tpu_metrics_debug`: False
|
992 |
+
- `debug`: []
|
993 |
+
- `dataloader_drop_last`: False
|
994 |
+
- `dataloader_num_workers`: 0
|
995 |
+
- `dataloader_prefetch_factor`: None
|
996 |
+
- `past_index`: -1
|
997 |
+
- `disable_tqdm`: False
|
998 |
+
- `remove_unused_columns`: True
|
999 |
+
- `label_names`: None
|
1000 |
+
- `load_best_model_at_end`: True
|
1001 |
+
- `ignore_data_skip`: False
|
1002 |
+
- `fsdp`: []
|
1003 |
+
- `fsdp_min_num_params`: 0
|
1004 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
1005 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
1006 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
1007 |
+
- `deepspeed`: None
|
1008 |
+
- `label_smoothing_factor`: 0.0
|
1009 |
+
- `optim`: adamw_torch
|
1010 |
+
- `optim_args`: None
|
1011 |
+
- `adafactor`: False
|
1012 |
+
- `group_by_length`: False
|
1013 |
+
- `length_column_name`: length
|
1014 |
+
- `ddp_find_unused_parameters`: None
|
1015 |
+
- `ddp_bucket_cap_mb`: None
|
1016 |
+
- `ddp_broadcast_buffers`: False
|
1017 |
+
- `dataloader_pin_memory`: True
|
1018 |
+
- `dataloader_persistent_workers`: False
|
1019 |
+
- `skip_memory_metrics`: True
|
1020 |
+
- `use_legacy_prediction_loop`: False
|
1021 |
+
- `push_to_hub`: False
|
1022 |
+
- `resume_from_checkpoint`: None
|
1023 |
+
- `hub_model_id`: None
|
1024 |
+
- `hub_strategy`: every_save
|
1025 |
+
- `hub_private_repo`: None
|
1026 |
+
- `hub_always_push`: False
|
1027 |
+
- `gradient_checkpointing`: False
|
1028 |
+
- `gradient_checkpointing_kwargs`: None
|
1029 |
+
- `include_inputs_for_metrics`: False
|
1030 |
+
- `include_for_metrics`: []
|
1031 |
+
- `eval_do_concat_batches`: True
|
1032 |
+
- `fp16_backend`: auto
|
1033 |
+
- `push_to_hub_model_id`: None
|
1034 |
+
- `push_to_hub_organization`: None
|
1035 |
+
- `mp_parameters`:
|
1036 |
+
- `auto_find_batch_size`: False
|
1037 |
+
- `full_determinism`: False
|
1038 |
+
- `torchdynamo`: None
|
1039 |
+
- `ray_scope`: last
|
1040 |
+
- `ddp_timeout`: 1800
|
1041 |
+
- `torch_compile`: False
|
1042 |
+
- `torch_compile_backend`: None
|
1043 |
+
- `torch_compile_mode`: None
|
1044 |
+
- `dispatch_batches`: None
|
1045 |
+
- `split_batches`: None
|
1046 |
+
- `include_tokens_per_second`: False
|
1047 |
+
- `include_num_input_tokens_seen`: False
|
1048 |
+
- `neftune_noise_alpha`: None
|
1049 |
+
- `optim_target_modules`: None
|
1050 |
+
- `batch_eval_metrics`: False
|
1051 |
+
- `eval_on_start`: False
|
1052 |
+
- `use_liger_kernel`: False
|
1053 |
+
- `eval_use_gather_object`: False
|
1054 |
+
- `average_tokens_across_devices`: False
|
1055 |
+
- `prompts`: None
|
1056 |
+
- `batch_sampler`: no_duplicates
|
1057 |
+
- `multi_dataset_batch_sampler`: proportional
|
1058 |
+
|
1059 |
+
</details>
|
1060 |
+
|
1061 |
+
### Training Logs
|
1062 |
+
<details><summary>Click to expand</summary>
|
1063 |
+
|
1064 |
+
| Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_128_dot_ndcg@10 | NanoNFCorpus_128_dot_ndcg@10 | NanoNQ_128_dot_ndcg@10 | NanoBEIR_mean_128_dot_ndcg@10 | NanoMSMARCO_256_dot_ndcg@10 | NanoNFCorpus_256_dot_ndcg@10 | NanoNQ_256_dot_ndcg@10 | NanoBEIR_mean_256_dot_ndcg@10 |
|
1065 |
+
|:----------:|:---------:|:-------------:|:---------------:|:---------------------------:|:----------------------------:|:----------------------:|:-----------------------------:|:---------------------------:|:----------------------------:|:----------------------:|:-----------------------------:|
|
1066 |
+
| -1 | -1 | - | - | 0.6175 | 0.2875 | 0.5432 | 0.4827 | 0.6158 | 0.3234 | 0.5929 | 0.5107 |
|
1067 |
+
| 0.0064 | 300 | 0.3621 | - | - | - | - | - | - | - | - | - |
|
1068 |
+
| 0.0128 | 600 | 0.3319 | - | - | - | - | - | - | - | - | - |
|
1069 |
+
| 0.0191 | 900 | 0.3212 | - | - | - | - | - | - | - | - | - |
|
1070 |
+
| 0.0255 | 1200 | 0.3154 | - | - | - | - | - | - | - | - | - |
|
1071 |
+
| 0.0319 | 1500 | 0.3129 | - | - | - | - | - | - | - | - | - |
|
1072 |
+
| 0.0383 | 1800 | 0.309 | - | - | - | - | - | - | - | - | - |
|
1073 |
+
| 0.0446 | 2100 | 0.317 | - | - | - | - | - | - | - | - | - |
|
1074 |
+
| 0.0510 | 2400 | 0.2997 | - | - | - | - | - | - | - | - | - |
|
1075 |
+
| 0.0574 | 2700 | 0.3409 | - | - | - | - | - | - | - | - | - |
|
1076 |
+
| 0.0638 | 3000 | 0.3251 | 0.3136 | 0.6049 | 0.2393 | 0.5583 | 0.4675 | 0.5950 | 0.2559 | 0.5555 | 0.4688 |
|
1077 |
+
| 0.0701 | 3300 | 0.3291 | - | - | - | - | - | - | - | - | - |
|
1078 |
+
| 0.0765 | 3600 | 0.3366 | - | - | - | - | - | - | - | - | - |
|
1079 |
+
| 0.0829 | 3900 | 0.3286 | - | - | - | - | - | - | - | - | - |
|
1080 |
+
| 0.0893 | 4200 | 0.3264 | - | - | - | - | - | - | - | - | - |
|
1081 |
+
| 0.0956 | 4500 | 0.3413 | - | - | - | - | - | - | - | - | - |
|
1082 |
+
| 0.1020 | 4800 | 0.3352 | - | - | - | - | - | - | - | - | - |
|
1083 |
+
| 0.1084 | 5100 | 0.3323 | - | - | - | - | - | - | - | - | - |
|
1084 |
+
| 0.1148 | 5400 | 0.3308 | - | - | - | - | - | - | - | - | - |
|
1085 |
+
| 0.1211 | 5700 | 0.3127 | - | - | - | - | - | - | - | - | - |
|
1086 |
+
| 0.1275 | 6000 | 0.3224 | 0.2949 | 0.5445 | 0.2155 | 0.5394 | 0.4331 | 0.5911 | 0.2340 | 0.5365 | 0.4539 |
|
1087 |
+
| 0.1339 | 6300 | 0.3216 | - | - | - | - | - | - | - | - | - |
|
1088 |
+
| 0.1403 | 6600 | 0.3202 | - | - | - | - | - | - | - | - | - |
|
1089 |
+
| 0.1466 | 6900 | 0.3296 | - | - | - | - | - | - | - | - | - |
|
1090 |
+
| 0.1530 | 7200 | 0.3171 | - | - | - | - | - | - | - | - | - |
|
1091 |
+
| 0.1594 | 7500 | 0.3141 | - | - | - | - | - | - | - | - | - |
|
1092 |
+
| 0.1658 | 7800 | 0.3202 | - | - | - | - | - | - | - | - | - |
|
1093 |
+
| 0.1721 | 8100 | 0.3088 | - | - | - | - | - | - | - | - | - |
|
1094 |
+
| 0.1785 | 8400 | 0.304 | - | - | - | - | - | - | - | - | - |
|
1095 |
+
| 0.1849 | 8700 | 0.3105 | - | - | - | - | - | - | - | - | - |
|
1096 |
+
| 0.1913 | 9000 | 0.307 | 0.2849 | 0.6038 | 0.2258 | 0.5471 | 0.4589 | 0.6241 | 0.2449 | 0.5498 | 0.4730 |
|
1097 |
+
| 0.1976 | 9300 | 0.3043 | - | - | - | - | - | - | - | - | - |
|
1098 |
+
| 0.2040 | 9600 | 0.3035 | - | - | - | - | - | - | - | - | - |
|
1099 |
+
| 0.2104 | 9900 | 0.3069 | - | - | - | - | - | - | - | - | - |
|
1100 |
+
| 0.2168 | 10200 | 0.3174 | - | - | - | - | - | - | - | - | - |
|
1101 |
+
| 0.2231 | 10500 | 0.3111 | - | - | - | - | - | - | - | - | - |
|
1102 |
+
| 0.2295 | 10800 | 0.295 | - | - | - | - | - | - | - | - | - |
|
1103 |
+
| 0.2359 | 11100 | 0.2892 | - | - | - | - | - | - | - | - | - |
|
1104 |
+
| 0.2423 | 11400 | 0.3012 | - | - | - | - | - | - | - | - | - |
|
1105 |
+
| 0.2486 | 11700 | 0.3061 | - | - | - | - | - | - | - | - | - |
|
1106 |
+
| 0.2550 | 12000 | 0.2863 | 0.2631 | 0.6190 | 0.2720 | 0.5379 | 0.4763 | 0.6056 | 0.2898 | 0.5419 | 0.4791 |
|
1107 |
+
| 0.2614 | 12300 | 0.3008 | - | - | - | - | - | - | - | - | - |
|
1108 |
+
| 0.2678 | 12600 | 0.2849 | - | - | - | - | - | - | - | - | - |
|
1109 |
+
| 0.2741 | 12900 | 0.2876 | - | - | - | - | - | - | - | - | - |
|
1110 |
+
| 0.2805 | 13200 | 0.2963 | - | - | - | - | - | - | - | - | - |
|
1111 |
+
| 0.2869 | 13500 | 0.2926 | - | - | - | - | - | - | - | - | - |
|
1112 |
+
| 0.2933 | 13800 | 0.2855 | - | - | - | - | - | - | - | - | - |
|
1113 |
+
| 0.2996 | 14100 | 0.2868 | - | - | - | - | - | - | - | - | - |
|
1114 |
+
| 0.3060 | 14400 | 0.294 | - | - | - | - | - | - | - | - | - |
|
1115 |
+
| 0.3124 | 14700 | 0.3008 | - | - | - | - | - | - | - | - | - |
|
1116 |
+
| 0.3188 | 15000 | 0.293 | 0.2745 | 0.5538 | 0.2847 | 0.5422 | 0.4602 | 0.5615 | 0.2976 | 0.5588 | 0.4726 |
|
1117 |
+
| 0.3252 | 15300 | 0.2776 | - | - | - | - | - | - | - | - | - |
|
1118 |
+
| 0.3315 | 15600 | 0.2906 | - | - | - | - | - | - | - | - | - |
|
1119 |
+
| 0.3379 | 15900 | 0.2874 | - | - | - | - | - | - | - | - | - |
|
1120 |
+
| 0.3443 | 16200 | 0.2834 | - | - | - | - | - | - | - | - | - |
|
1121 |
+
| 0.3507 | 16500 | 0.2718 | - | - | - | - | - | - | - | - | - |
|
1122 |
+
| 0.3570 | 16800 | 0.2834 | - | - | - | - | - | - | - | - | - |
|
1123 |
+
| 0.3634 | 17100 | 0.2833 | - | - | - | - | - | - | - | - | - |
|
1124 |
+
| 0.3698 | 17400 | 0.281 | - | - | - | - | - | - | - | - | - |
|
1125 |
+
| 0.3762 | 17700 | 0.2922 | - | - | - | - | - | - | - | - | - |
|
1126 |
+
| 0.3825 | 18000 | 0.279 | 0.2623 | 0.5851 | 0.2696 | 0.5097 | 0.4548 | 0.5849 | 0.2776 | 0.5570 | 0.4732 |
|
1127 |
+
| 0.3889 | 18300 | 0.2894 | - | - | - | - | - | - | - | - | - |
|
1128 |
+
| 0.3953 | 18600 | 0.283 | - | - | - | - | - | - | - | - | - |
|
1129 |
+
| 0.4017 | 18900 | 0.2824 | - | - | - | - | - | - | - | - | - |
|
1130 |
+
| 0.4080 | 19200 | 0.2758 | - | - | - | - | - | - | - | - | - |
|
1131 |
+
| 0.4144 | 19500 | 0.2893 | - | - | - | - | - | - | - | - | - |
|
1132 |
+
| 0.4208 | 19800 | 0.278 | - | - | - | - | - | - | - | - | - |
|
1133 |
+
| 0.4272 | 20100 | 0.2814 | - | - | - | - | - | - | - | - | - |
|
1134 |
+
| 0.4335 | 20400 | 0.278 | - | - | - | - | - | - | - | - | - |
|
1135 |
+
| 0.4399 | 20700 | 0.2783 | - | - | - | - | - | - | - | - | - |
|
1136 |
+
| 0.4463 | 21000 | 0.2803 | 0.2510 | 0.5880 | 0.2664 | 0.5664 | 0.4736 | 0.6115 | 0.2734 | 0.5465 | 0.4772 |
|
1137 |
+
| 0.4527 | 21300 | 0.2668 | - | - | - | - | - | - | - | - | - |
|
1138 |
+
| 0.4590 | 21600 | 0.2828 | - | - | - | - | - | - | - | - | - |
|
1139 |
+
| 0.4654 | 21900 | 0.2815 | - | - | - | - | - | - | - | - | - |
|
1140 |
+
| 0.4718 | 22200 | 0.2778 | - | - | - | - | - | - | - | - | - |
|
1141 |
+
| 0.4782 | 22500 | 0.271 | - | - | - | - | - | - | - | - | - |
|
1142 |
+
| 0.4845 | 22800 | 0.2696 | - | - | - | - | - | - | - | - | - |
|
1143 |
+
| 0.4909 | 23100 | 0.2698 | - | - | - | - | - | - | - | - | - |
|
1144 |
+
| 0.4973 | 23400 | 0.2768 | - | - | - | - | - | - | - | - | - |
|
1145 |
+
| 0.5037 | 23700 | 0.2626 | - | - | - | - | - | - | - | - | - |
|
1146 |
+
| 0.5100 | 24000 | 0.2611 | 0.2414 | 0.6078 | 0.2635 | 0.5668 | 0.4794 | 0.6231 | 0.2942 | 0.5944 | 0.5039 |
|
1147 |
+
| 0.5164 | 24300 | 0.2736 | - | - | - | - | - | - | - | - | - |
|
1148 |
+
| 0.5228 | 24600 | 0.2695 | - | - | - | - | - | - | - | - | - |
|
1149 |
+
| 0.5292 | 24900 | 0.2673 | - | - | - | - | - | - | - | - | - |
|
1150 |
+
| 0.5355 | 25200 | 0.2746 | - | - | - | - | - | - | - | - | - |
|
1151 |
+
| 0.5419 | 25500 | 0.2681 | - | - | - | - | - | - | - | - | - |
|
1152 |
+
| 0.5483 | 25800 | 0.2676 | - | - | - | - | - | - | - | - | - |
|
1153 |
+
| 0.5547 | 26100 | 0.2686 | - | - | - | - | - | - | - | - | - |
|
1154 |
+
| 0.5610 | 26400 | 0.2652 | - | - | - | - | - | - | - | - | - |
|
1155 |
+
| 0.5674 | 26700 | 0.2596 | - | - | - | - | - | - | - | - | - |
|
1156 |
+
| 0.5738 | 27000 | 0.2677 | 0.2494 | 0.6018 | 0.2460 | 0.5280 | 0.4586 | 0.6238 | 0.2775 | 0.5673 | 0.4895 |
|
1157 |
+
| 0.5802 | 27300 | 0.2621 | - | - | - | - | - | - | - | - | - |
|
1158 |
+
| 0.5865 | 27600 | 0.2558 | - | - | - | - | - | - | - | - | - |
|
1159 |
+
| 0.5929 | 27900 | 0.251 | - | - | - | - | - | - | - | - | - |
|
1160 |
+
| 0.5993 | 28200 | 0.2601 | - | - | - | - | - | - | - | - | - |
|
1161 |
+
| 0.6057 | 28500 | 0.2612 | - | - | - | - | - | - | - | - | - |
|
1162 |
+
| 0.6120 | 28800 | 0.2695 | - | - | - | - | - | - | - | - | - |
|
1163 |
+
| 0.6184 | 29100 | 0.2662 | - | - | - | - | - | - | - | - | - |
|
1164 |
+
| 0.6248 | 29400 | 0.2589 | - | - | - | - | - | - | - | - | - |
|
1165 |
+
| 0.6312 | 29700 | 0.2602 | - | - | - | - | - | - | - | - | - |
|
1166 |
+
| 0.6376 | 30000 | 0.2698 | 0.2507 | 0.5892 | 0.2996 | 0.5386 | 0.4758 | 0.6102 | 0.2941 | 0.5535 | 0.4860 |
|
1167 |
+
| 0.6439 | 30300 | 0.2625 | - | - | - | - | - | - | - | - | - |
|
1168 |
+
| 0.6503 | 30600 | 0.2598 | - | - | - | - | - | - | - | - | - |
|
1169 |
+
| 0.6567 | 30900 | 0.2594 | - | - | - | - | - | - | - | - | - |
|
1170 |
+
| 0.6631 | 31200 | 0.2618 | - | - | - | - | - | - | - | - | - |
|
1171 |
+
| 0.6694 | 31500 | 0.2556 | - | - | - | - | - | - | - | - | - |
|
1172 |
+
| 0.6758 | 31800 | 0.2591 | - | - | - | - | - | - | - | - | - |
|
1173 |
+
| 0.6822 | 32100 | 0.2544 | - | - | - | - | - | - | - | - | - |
|
1174 |
+
| 0.6886 | 32400 | 0.2589 | - | - | - | - | - | - | - | - | - |
|
1175 |
+
| 0.6949 | 32700 | 0.2522 | - | - | - | - | - | - | - | - | - |
|
1176 |
+
| 0.7013 | 33000 | 0.2521 | 0.2535 | 0.6053 | 0.2650 | 0.5329 | 0.4677 | 0.6115 | 0.2925 | 0.6057 | 0.5032 |
|
1177 |
+
| 0.7077 | 33300 | 0.2576 | - | - | - | - | - | - | - | - | - |
|
1178 |
+
| 0.7141 | 33600 | 0.2582 | - | - | - | - | - | - | - | - | - |
|
1179 |
+
| 0.7204 | 33900 | 0.2567 | - | - | - | - | - | - | - | - | - |
|
1180 |
+
| 0.7268 | 34200 | 0.2577 | - | - | - | - | - | - | - | - | - |
|
1181 |
+
| 0.7332 | 34500 | 0.2568 | - | - | - | - | - | - | - | - | - |
|
1182 |
+
| 0.7396 | 34800 | 0.254 | - | - | - | - | - | - | - | - | - |
|
1183 |
+
| 0.7459 | 35100 | 0.2489 | - | - | - | - | - | - | - | - | - |
|
1184 |
+
| 0.7523 | 35400 | 0.2545 | - | - | - | - | - | - | - | - | - |
|
1185 |
+
| 0.7587 | 35700 | 0.2476 | - | - | - | - | - | - | - | - | - |
|
1186 |
+
| 0.7651 | 36000 | 0.2637 | 0.2397 | 0.6138 | 0.2726 | 0.5627 | 0.4831 | 0.6056 | 0.2889 | 0.5745 | 0.4897 |
|
1187 |
+
| 0.7714 | 36300 | 0.2508 | - | - | - | - | - | - | - | - | - |
|
1188 |
+
| 0.7778 | 36600 | 0.2569 | - | - | - | - | - | - | - | - | - |
|
1189 |
+
| 0.7842 | 36900 | 0.2419 | - | - | - | - | - | - | - | - | - |
|
1190 |
+
| 0.7906 | 37200 | 0.2453 | - | - | - | - | - | - | - | - | - |
|
1191 |
+
| 0.7969 | 37500 | 0.2456 | - | - | - | - | - | - | - | - | - |
|
1192 |
+
| 0.8033 | 37800 | 0.2497 | - | - | - | - | - | - | - | - | - |
|
1193 |
+
| 0.8097 | 38100 | 0.2556 | - | - | - | - | - | - | - | - | - |
|
1194 |
+
| 0.8161 | 38400 | 0.252 | - | - | - | - | - | - | - | - | - |
|
1195 |
+
| 0.8224 | 38700 | 0.2423 | - | - | - | - | - | - | - | - | - |
|
1196 |
+
| 0.8288 | 39000 | 0.2545 | 0.2301 | 0.5927 | 0.2895 | 0.5553 | 0.4792 | 0.5979 | 0.2987 | 0.5587 | 0.4851 |
|
1197 |
+
| 0.8352 | 39300 | 0.2482 | - | - | - | - | - | - | - | - | - |
|
1198 |
+
| 0.8416 | 39600 | 0.2429 | - | - | - | - | - | - | - | - | - |
|
1199 |
+
| 0.8479 | 39900 | 0.2463 | - | - | - | - | - | - | - | - | - |
|
1200 |
+
| 0.8543 | 40200 | 0.2354 | - | - | - | - | - | - | - | - | - |
|
1201 |
+
| 0.8607 | 40500 | 0.2466 | - | - | - | - | - | - | - | - | - |
|
1202 |
+
| 0.8671 | 40800 | 0.2484 | - | - | - | - | - | - | - | - | - |
|
1203 |
+
| 0.8734 | 41100 | 0.2448 | - | - | - | - | - | - | - | - | - |
|
1204 |
+
| 0.8798 | 41400 | 0.2448 | - | - | - | - | - | - | - | - | - |
|
1205 |
+
| 0.8862 | 41700 | 0.2515 | - | - | - | - | - | - | - | - | - |
|
1206 |
+
| 0.8926 | 42000 | 0.2428 | 0.2392 | 0.6001 | 0.2826 | 0.5857 | 0.4895 | 0.6208 | 0.3019 | 0.6010 | 0.5079 |
|
1207 |
+
| 0.8989 | 42300 | 0.2497 | - | - | - | - | - | - | - | - | - |
|
1208 |
+
| 0.9053 | 42600 | 0.2415 | - | - | - | - | - | - | - | - | - |
|
1209 |
+
| 0.9117 | 42900 | 0.2408 | - | - | - | - | - | - | - | - | - |
|
1210 |
+
| 0.9181 | 43200 | 0.242 | - | - | - | - | - | - | - | - | - |
|
1211 |
+
| 0.9245 | 43500 | 0.2412 | - | - | - | - | - | - | - | - | - |
|
1212 |
+
| 0.9308 | 43800 | 0.2472 | - | - | - | - | - | - | - | - | - |
|
1213 |
+
| 0.9372 | 44100 | 0.2408 | - | - | - | - | - | - | - | - | - |
|
1214 |
+
| 0.9436 | 44400 | 0.2374 | - | - | - | - | - | - | - | - | - |
|
1215 |
+
| 0.9500 | 44700 | 0.2312 | - | - | - | - | - | - | - | - | - |
|
1216 |
+
| **0.9563** | **45000** | **0.2412** | **0.2379** | **0.6079** | **0.2711** | **0.5977** | **0.4922** | **0.6326** | **0.3071** | **0.5943** | **0.5113** |
|
1217 |
+
| 0.9627 | 45300 | 0.2381 | - | - | - | - | - | - | - | - | - |
|
1218 |
+
| 0.9691 | 45600 | 0.2456 | - | - | - | - | - | - | - | - | - |
|
1219 |
+
| 0.9755 | 45900 | 0.2418 | - | - | - | - | - | - | - | - | - |
|
1220 |
+
| 0.9818 | 46200 | 0.2355 | - | - | - | - | - | - | - | - | - |
|
1221 |
+
| 0.9882 | 46500 | 0.2424 | - | - | - | - | - | - | - | - | - |
|
1222 |
+
| 0.9946 | 46800 | 0.2389 | - | - | - | - | - | - | - | - | - |
|
1223 |
+
|
1224 |
+
* The bold row denotes the saved checkpoint.
|
1225 |
+
</details>
|
1226 |
+
|
1227 |
+
### Environmental Impact
|
1228 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
1229 |
+
- **Energy Consumed**: 1.202 kWh
|
1230 |
+
- **Carbon Emitted**: 0.467 kg of CO2
|
1231 |
+
- **Hours Used**: 3.125 hours
|
1232 |
+
|
1233 |
+
### Training Hardware
|
1234 |
+
- **On Cloud**: No
|
1235 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
1236 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
1237 |
+
- **RAM Size**: 31.78 GB
|
1238 |
+
|
1239 |
+
### Framework Versions
|
1240 |
+
- Python: 3.11.6
|
1241 |
+
- Sentence Transformers: 4.2.0.dev0
|
1242 |
+
- Transformers: 4.49.0
|
1243 |
+
- PyTorch: 2.6.0+cu124
|
1244 |
+
- Accelerate: 1.5.1
|
1245 |
+
- Datasets: 2.21.0
|
1246 |
+
- Tokenizers: 0.21.1
|
1247 |
+
|
1248 |
+
## Citation
|
1249 |
+
|
1250 |
+
### BibTeX
|
1251 |
+
|
1252 |
+
#### Sentence Transformers
|
1253 |
+
```bibtex
|
1254 |
+
@inproceedings{reimers-2019-sentence-bert,
|
1255 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
1256 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
1257 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
1258 |
+
month = "11",
|
1259 |
+
year = "2019",
|
1260 |
+
publisher = "Association for Computational Linguistics",
|
1261 |
+
url = "https://arxiv.org/abs/1908.10084",
|
1262 |
+
}
|
1263 |
+
```
|
1264 |
+
|
1265 |
+
#### CSRLoss
|
1266 |
+
```bibtex
|
1267 |
+
@misc{wen2025matryoshkarevisitingsparsecoding,
|
1268 |
+
title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation},
|
1269 |
+
author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You},
|
1270 |
+
year={2025},
|
1271 |
+
eprint={2503.01776},
|
1272 |
+
archivePrefix={arXiv},
|
1273 |
+
primaryClass={cs.LG},
|
1274 |
+
url={https://arxiv.org/abs/2503.01776},
|
1275 |
+
}
|
1276 |
+
```
|
1277 |
+
|
1278 |
+
#### SparseMultipleNegativesRankingLoss
|
1279 |
+
```bibtex
|
1280 |
+
@misc{henderson2017efficient,
|
1281 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
1282 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
1283 |
+
year={2017},
|
1284 |
+
eprint={1705.00652},
|
1285 |
+
archivePrefix={arXiv},
|
1286 |
+
primaryClass={cs.CL}
|
1287 |
+
}
|
1288 |
+
```
|
1289 |
+
|
1290 |
+
<!--
|
1291 |
+
## Glossary
|
1292 |
+
|
1293 |
+
*Clearly define terms in order to be accessible across audiences.*
|
1294 |
+
-->
|
1295 |
+
|
1296 |
+
<!--
|
1297 |
+
## Model Card Authors
|
1298 |
+
|
1299 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1300 |
+
-->
|
1301 |
+
|
1302 |
+
<!--
|
1303 |
+
## Model Card Contact
|
1304 |
+
|
1305 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1306 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mixedbread-ai/mxbai-embed-large-v1",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 4096,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 16,
|
18 |
+
"num_hidden_layers": 24,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.49.0",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.2.0.dev0",
|
4 |
+
"transformers": "4.49.0",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"query": "Represent this sentence for searching relevant passages: ",
|
9 |
+
"passage": ""
|
10 |
+
},
|
11 |
+
"default_prompt_name": null,
|
12 |
+
"model_type": "SparseEncoder",
|
13 |
+
"similarity_fn_name": "dot"
|
14 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e86b2a89f7f8933cf7bd90586cdf69d0012140e412818234b234f807e51ee574
|
3 |
+
size 1340612432
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_CSRSparsity",
|
18 |
+
"type": "sentence_transformers.sparse_encoder.models.CSRSparsity"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|