bart_finetuned_clarify_aspects
This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0560
- Micro Precision: 0.2456
- Micro Recall: 0.0146
- Micro F1: 0.0275
- Macro Precision: 0.2301
- Macro Recall: 0.0132
- Macro F1: 0.0251
- Bleu: 0.8555
- Rouge1: 0.8184
- Rouge2: 0.5282
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Micro Precision | Micro Recall | Micro F1 | Macro Precision | Macro Recall | Macro F1 | Bleu | Rouge1 | Rouge2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4.8047 | 0.2404 | 50 | 2.1144 | 0.1810 | 0.1332 | 0.1535 | 0.0870 | 0.1541 | 0.1112 | 0.6815 | 0.7396 | 0.4212 |
1.7948 | 0.4808 | 100 | 0.8959 | 0.1842 | 0.1384 | 0.1581 | 0.0894 | 0.1631 | 0.1155 | 0.6860 | 0.7497 | 0.4381 |
0.7301 | 0.7212 | 150 | 0.2402 | 0.2187 | 0.0926 | 0.1301 | 0.1095 | 0.0917 | 0.0998 | 0.7092 | 0.7108 | 0.4486 |
0.22 | 0.9615 | 200 | 0.0950 | 0.2541 | 0.0812 | 0.1230 | 0.3683 | 0.0905 | 0.1453 | 0.7932 | 0.7730 | 0.4542 |
0.1005 | 1.2019 | 250 | 0.0699 | 0.2168 | 0.1290 | 0.1618 | 0.3337 | 0.1228 | 0.1796 | 0.7490 | 0.7693 | 0.4552 |
0.0814 | 1.4423 | 300 | 0.0750 | 0.1692 | 0.0468 | 0.0733 | 0.1176 | 0.0407 | 0.0605 | 0.8194 | 0.7906 | 0.4550 |
0.075 | 1.6827 | 350 | 0.0681 | 0.2938 | 0.0593 | 0.0987 | 0.1469 | 0.0486 | 0.0731 | 0.8457 | 0.8197 | 0.4467 |
0.08 | 1.9231 | 400 | 0.0682 | 0.2427 | 0.1041 | 0.1457 | 0.2116 | 0.1018 | 0.1375 | 0.7777 | 0.7904 | 0.4945 |
0.0712 | 2.1635 | 450 | 0.0682 | 0.3137 | 0.0166 | 0.0316 | 0.2348 | 0.0147 | 0.0277 | 0.8509 | 0.7969 | 0.4711 |
0.0706 | 2.4038 | 500 | 0.0632 | 0.3026 | 0.0239 | 0.0444 | 0.2769 | 0.0211 | 0.0392 | 0.8550 | 0.8220 | 0.5130 |
0.0677 | 2.6442 | 550 | 0.0642 | 0.1622 | 0.0062 | 0.0120 | 0.1548 | 0.0055 | 0.0105 | 0.8520 | 0.8070 | 0.4974 |
0.0664 | 2.8846 | 600 | 0.0604 | 0.3846 | 0.0052 | 0.0103 | 0.4167 | 0.0050 | 0.0098 | 0.8548 | 0.8162 | 0.5217 |
0.0657 | 3.125 | 650 | 0.0613 | 0.2763 | 0.0219 | 0.0405 | 0.2929 | 0.0218 | 0.0405 | 0.8583 | 0.8304 | 0.5329 |
0.0634 | 3.3654 | 700 | 0.0608 | 0.1786 | 0.0052 | 0.0101 | 0.1548 | 0.0047 | 0.0092 | 0.8513 | 0.8091 | 0.5055 |
0.0627 | 3.6058 | 750 | 0.0568 | 0.3265 | 0.0166 | 0.0317 | 0.3129 | 0.0147 | 0.0280 | 0.8463 | 0.8097 | 0.5113 |
0.0595 | 3.8462 | 800 | 0.0572 | 0.1 | 0.0010 | 0.0021 | 0.05 | 0.0007 | 0.0014 | 0.8508 | 0.8198 | 0.5226 |
0.0603 | 4.0865 | 850 | 0.0562 | 0.2381 | 0.0156 | 0.0293 | 0.2455 | 0.0153 | 0.0288 | 0.8528 | 0.8172 | 0.5253 |
0.0588 | 4.3269 | 900 | 0.0565 | 0.2955 | 0.0135 | 0.0259 | 0.3193 | 0.0132 | 0.0253 | 0.8559 | 0.8178 | 0.5243 |
0.06 | 4.5673 | 950 | 0.0565 | 0.2931 | 0.0177 | 0.0334 | 0.3056 | 0.0167 | 0.0317 | 0.8559 | 0.8159 | 0.5255 |
0.0614 | 4.8077 | 1000 | 0.0560 | 0.2456 | 0.0146 | 0.0275 | 0.2301 | 0.0132 | 0.0251 | 0.8555 | 0.8184 | 0.5282 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for tlam25/bart_finetuned_clarify_aspects
Base model
facebook/bart-base