bart_finetuned_clarify_aspects

This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0560
  • Micro Precision: 0.2456
  • Micro Recall: 0.0146
  • Micro F1: 0.0275
  • Macro Precision: 0.2301
  • Macro Recall: 0.0132
  • Macro F1: 0.0251
  • Bleu: 0.8555
  • Rouge1: 0.8184
  • Rouge2: 0.5282

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Micro Precision Micro Recall Micro F1 Macro Precision Macro Recall Macro F1 Bleu Rouge1 Rouge2
4.8047 0.2404 50 2.1144 0.1810 0.1332 0.1535 0.0870 0.1541 0.1112 0.6815 0.7396 0.4212
1.7948 0.4808 100 0.8959 0.1842 0.1384 0.1581 0.0894 0.1631 0.1155 0.6860 0.7497 0.4381
0.7301 0.7212 150 0.2402 0.2187 0.0926 0.1301 0.1095 0.0917 0.0998 0.7092 0.7108 0.4486
0.22 0.9615 200 0.0950 0.2541 0.0812 0.1230 0.3683 0.0905 0.1453 0.7932 0.7730 0.4542
0.1005 1.2019 250 0.0699 0.2168 0.1290 0.1618 0.3337 0.1228 0.1796 0.7490 0.7693 0.4552
0.0814 1.4423 300 0.0750 0.1692 0.0468 0.0733 0.1176 0.0407 0.0605 0.8194 0.7906 0.4550
0.075 1.6827 350 0.0681 0.2938 0.0593 0.0987 0.1469 0.0486 0.0731 0.8457 0.8197 0.4467
0.08 1.9231 400 0.0682 0.2427 0.1041 0.1457 0.2116 0.1018 0.1375 0.7777 0.7904 0.4945
0.0712 2.1635 450 0.0682 0.3137 0.0166 0.0316 0.2348 0.0147 0.0277 0.8509 0.7969 0.4711
0.0706 2.4038 500 0.0632 0.3026 0.0239 0.0444 0.2769 0.0211 0.0392 0.8550 0.8220 0.5130
0.0677 2.6442 550 0.0642 0.1622 0.0062 0.0120 0.1548 0.0055 0.0105 0.8520 0.8070 0.4974
0.0664 2.8846 600 0.0604 0.3846 0.0052 0.0103 0.4167 0.0050 0.0098 0.8548 0.8162 0.5217
0.0657 3.125 650 0.0613 0.2763 0.0219 0.0405 0.2929 0.0218 0.0405 0.8583 0.8304 0.5329
0.0634 3.3654 700 0.0608 0.1786 0.0052 0.0101 0.1548 0.0047 0.0092 0.8513 0.8091 0.5055
0.0627 3.6058 750 0.0568 0.3265 0.0166 0.0317 0.3129 0.0147 0.0280 0.8463 0.8097 0.5113
0.0595 3.8462 800 0.0572 0.1 0.0010 0.0021 0.05 0.0007 0.0014 0.8508 0.8198 0.5226
0.0603 4.0865 850 0.0562 0.2381 0.0156 0.0293 0.2455 0.0153 0.0288 0.8528 0.8172 0.5253
0.0588 4.3269 900 0.0565 0.2955 0.0135 0.0259 0.3193 0.0132 0.0253 0.8559 0.8178 0.5243
0.06 4.5673 950 0.0565 0.2931 0.0177 0.0334 0.3056 0.0167 0.0317 0.8559 0.8159 0.5255
0.0614 4.8077 1000 0.0560 0.2456 0.0146 0.0275 0.2301 0.0132 0.0251 0.8555 0.8184 0.5282

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
139M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for tlam25/bart_finetuned_clarify_aspects

Base model

facebook/bart-base
Finetuned
(411)
this model