Model card for vit_base_patch16_rope_224.naver_in1k
A ROPE-ViT model with ROPE for image classification. Trained on ImageNet-1k by paper authors.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 86.4
- GMACs: 17.6
- Activations (M): 23.9
- Image size: 224 x 224
- Dataset: ImageNet-1k
- Papers:
- Rotary Position Embedding for Vision Transformer: https://arxiv.org/abs/2403.13298
- Original: https://github.com/naver-ai/rope-vit
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_base_patch16_rope_224.naver_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Feature Map Extraction
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_base_patch16_rope_224.naver_in1k',
pretrained=True,
features_only=True,
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
for o in output:
# print shape of each feature map in output
# e.g.:
# torch.Size([1, 768, 14, 14])
# torch.Size([1, 768, 14, 14])
# torch.Size([1, 768, 14, 14])
print(o.shape)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_base_patch16_rope_224.naver_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 197, 768) shaped tensor
output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor
Model Comparison
By Top-1 (224x224 resolution)
model | img_size | top1 | top5 | param_count |
---|---|---|---|---|
vit_large_patch16_rope_mixed_ape_224.naver_in1k | 224 | 84.84 | 97.122 | 304.4 |
vit_large_patch16_rope_mixed_224.naver_in1k | 224 | 84.828 | 97.116 | 304.2 |
vit_large_patch16_rope_ape_224.naver_in1k | 224 | 84.65 | 97.154 | 304.37 |
vit_large_patch16_rope_224.naver_in1k | 224 | 84.648 | 97.122 | 304.17 |
vit_base_patch16_rope_mixed_ape_224.naver_in1k | 224 | 83.894 | 96.754 | 86.59 |
vit_base_patch16_rope_mixed_224.naver_in1k | 224 | 83.804 | 96.712 | 86.44 |
vit_base_patch16_rope_ape_224.naver_in1k | 224 | 83.782 | 96.61 | 86.59 |
vit_base_patch16_rope_224.naver_in1k | 224 | 83.718 | 96.672 | 86.43 |
vit_small_patch16_rope_224.naver_in1k | 224 | 81.23 | 95.022 | 21.98 |
vit_small_patch16_rope_mixed_224.naver_in1k | 224 | 81.216 | 95.022 | 21.99 |
vit_small_patch16_rope_ape_224.naver_in1k | 224 | 81.004 | 95.016 | 22.06 |
vit_small_patch16_rope_mixed_ape_224.naver_in1k | 224 | 80.986 | 94.976 | 22.06 |
Extrapolation Performance (320x320 resolution)
model | img_size | top1 | top5 | param_count |
---|---|---|---|---|
vit_large_patch16_rope_mixed_224.naver_in1k | 320 | 85.656 | 97.474 | 304.2 |
vit_large_patch16_rope_mixed_ape_224.naver_in1k | 320 | 85.594 | 97.508 | 304.4 |
vit_large_patch16_rope_ape_224.naver_in1k | 320 | 85.344 | 97.438 | 304.37 |
vit_large_patch16_rope_224.naver_in1k | 320 | 85.258 | 97.42 | 304.17 |
vit_base_patch16_rope_mixed_224.naver_in1k | 320 | 84.65 | 97.106 | 86.44 |
vit_base_patch16_rope_mixed_ape_224.naver_in1k | 320 | 84.58 | 97.144 | 86.59 |
vit_base_patch16_rope_ape_224.naver_in1k | 320 | 84.368 | 96.968 | 86.59 |
vit_base_patch16_rope_224.naver_in1k | 320 | 84.296 | 96.898 | 86.43 |
vit_small_patch16_rope_mixed_224.naver_in1k | 320 | 82.238 | 95.592 | 21.99 |
vit_small_patch16_rope_mixed_ape_224.naver_in1k | 320 | 82.056 | 95.586 | 22.06 |
vit_small_patch16_rope_ape_224.naver_in1k | 320 | 81.944 | 95.506 | 22.06 |
vit_small_patch16_rope_224.naver_in1k | 320 | 81.46 | 95.142 | 21.98 |
ROPE-ViT demonstrates strong extrapolation performance when tested at higher resolutions than training resolution (224x224), maintaining or improving accuracy at 320x320.
Citation
@inproceedings{heo2024rotary,
title={Rotary position embedding for vision transformer},
author={Heo, Byeongho and Park, Song and Han, Dongyoon and Yun, Sangdoo},
booktitle={European Conference on Computer Vision},
pages={289--305},
year={2024},
organization={Springer}
}
- Downloads last month
- 48
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support