Model card for vit_base_patch16_rope_224.naver_in1k

A ROPE-ViT model with ROPE for image classification. Trained on ImageNet-1k by paper authors.

Model Details

Model Usage

Image Classification

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('vit_base_patch16_rope_224.naver_in1k', pretrained=True)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

Feature Map Extraction

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'vit_base_patch16_rope_224.naver_in1k',
    pretrained=True,
    features_only=True,
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

for o in output:
    # print shape of each feature map in output
    # e.g.:
    #  torch.Size([1, 768, 14, 14])
    #  torch.Size([1, 768, 14, 14])
    #  torch.Size([1, 768, 14, 14])

    print(o.shape)

Image Embeddings

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'vit_base_patch16_rope_224.naver_in1k',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 197, 768) shaped tensor

output = model.forward_head(output, pre_logits=True)
# output is a (1, num_features) shaped tensor

Model Comparison

By Top-1 (224x224 resolution)

model img_size top1 top5 param_count
vit_large_patch16_rope_mixed_ape_224.naver_in1k 224 84.84 97.122 304.4
vit_large_patch16_rope_mixed_224.naver_in1k 224 84.828 97.116 304.2
vit_large_patch16_rope_ape_224.naver_in1k 224 84.65 97.154 304.37
vit_large_patch16_rope_224.naver_in1k 224 84.648 97.122 304.17
vit_base_patch16_rope_mixed_ape_224.naver_in1k 224 83.894 96.754 86.59
vit_base_patch16_rope_mixed_224.naver_in1k 224 83.804 96.712 86.44
vit_base_patch16_rope_ape_224.naver_in1k 224 83.782 96.61 86.59
vit_base_patch16_rope_224.naver_in1k 224 83.718 96.672 86.43
vit_small_patch16_rope_224.naver_in1k 224 81.23 95.022 21.98
vit_small_patch16_rope_mixed_224.naver_in1k 224 81.216 95.022 21.99
vit_small_patch16_rope_ape_224.naver_in1k 224 81.004 95.016 22.06
vit_small_patch16_rope_mixed_ape_224.naver_in1k 224 80.986 94.976 22.06

Extrapolation Performance (320x320 resolution)

model img_size top1 top5 param_count
vit_large_patch16_rope_mixed_224.naver_in1k 320 85.656 97.474 304.2
vit_large_patch16_rope_mixed_ape_224.naver_in1k 320 85.594 97.508 304.4
vit_large_patch16_rope_ape_224.naver_in1k 320 85.344 97.438 304.37
vit_large_patch16_rope_224.naver_in1k 320 85.258 97.42 304.17
vit_base_patch16_rope_mixed_224.naver_in1k 320 84.65 97.106 86.44
vit_base_patch16_rope_mixed_ape_224.naver_in1k 320 84.58 97.144 86.59
vit_base_patch16_rope_ape_224.naver_in1k 320 84.368 96.968 86.59
vit_base_patch16_rope_224.naver_in1k 320 84.296 96.898 86.43
vit_small_patch16_rope_mixed_224.naver_in1k 320 82.238 95.592 21.99
vit_small_patch16_rope_mixed_ape_224.naver_in1k 320 82.056 95.586 22.06
vit_small_patch16_rope_ape_224.naver_in1k 320 81.944 95.506 22.06
vit_small_patch16_rope_224.naver_in1k 320 81.46 95.142 21.98

ROPE-ViT demonstrates strong extrapolation performance when tested at higher resolutions than training resolution (224x224), maintaining or improving accuracy at 320x320.

Citation

@inproceedings{heo2024rotary,
  title={Rotary position embedding for vision transformer},
  author={Heo, Byeongho and Park, Song and Han, Dongyoon and Yun, Sangdoo},
  booktitle={European Conference on Computer Vision},
  pages={289--305},
  year={2024},
  organization={Springer}
}
Downloads last month
48
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train timm/vit_base_patch16_rope_224.naver_in1k