Model card for efficientformer_l7.snap_dist_in1k
A EfficientFormer image classification model. Pretrained with distillation on ImageNet-1k.
Model Details
- Model Type: Image classification / feature backbone
- Model Stats:
- Params (M): 82.2
- GMACs: 10.2
- Activations (M): 24.5
- Image size: 224 x 224
- Original: https://github.com/snap-research/EfficientFormer
- Papers:
- EfficientFormer: Vision Transformers at MobileNet Speed: https://arxiv.org/abs/2206.01191
- Dataset: ImageNet-1k
Model Usage
Image Classification
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model('efficientformer_l7.snap_dist_in1k', pretrained=True)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
Image Embeddings
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
model = timm.create_model(
'efficientformer_l7.snap_dist_in1k',
pretrained=True,
num_classes=0, # remove classifier nn.Linear
)
model = model.eval()
# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# or equivalently (without needing to set num_classes=0)
output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
output = model.forward_head(output, pre_logits=True)
# output is (batch_size, num_features) tensor
Model Comparison
model | top1 | top5 | param_count | img_size |
---|---|---|---|---|
efficientformerv2_l.snap_dist_in1k | 83.628 | 96.54 | 26.32 | 224 |
efficientformer_l7.snap_dist_in1k | 83.368 | 96.534 | 82.23 | 224 |
efficientformer_l3.snap_dist_in1k | 82.572 | 96.24 | 31.41 | 224 |
efficientformerv2_s2.snap_dist_in1k | 82.128 | 95.902 | 12.71 | 224 |
efficientformer_l1.snap_dist_in1k | 80.496 | 94.984 | 12.29 | 224 |
efficientformerv2_s1.snap_dist_in1k | 79.698 | 94.698 | 6.19 | 224 |
efficientformerv2_s0.snap_dist_in1k | 76.026 | 92.77 | 3.6 | 224 |
Citation
@article{li2022efficientformer,
title={EfficientFormer: Vision Transformers at MobileNet Speed},
author={Li, Yanyu and Yuan, Geng and Wen, Yang and Hu, Ju and Evangelidis, Georgios and Tulyakov, Sergey and Wang, Yanzhi and Ren, Jian},
journal={arXiv preprint arXiv:2206.01191},
year={2022}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
}
- Downloads last month
- 378
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.