|
--- |
|
library_name: transformers |
|
tags: |
|
- bitnet |
|
- falcon-e |
|
license: other |
|
license_name: falcon-llm-license |
|
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html |
|
--- |
|
|
|
 |
|
|
|
# Table of Contents |
|
|
|
0. [TL;DR](#TL;DR) |
|
1. [Model Details](#model-details) |
|
2. [Training Details](#training-details) |
|
3. [Usage](#usage) |
|
4. [Evaluation](#evaluation) |
|
5. [Citation](#citation) |
|
|
|
|
|
# TL;DR |
|
|
|
# Model Details |
|
|
|
## Model Description |
|
|
|
- **Developed by:** [https://www.tii.ae](https://www.tii.ae) |
|
- **Model type:** Causal decoder-only / Base version |
|
- **Architecture:** Pure-transformer - 1.58bit version |
|
- **Language(s) (NLP):** English |
|
- **License:** Falcon-LLM License |
|
|
|
# Training details |
|
|
|
For more details about the training protocol of this model, please refer to the [Falcon-E technical blogpost](https://falcon-lm.github.io/blog/falcon-edge/). |
|
|
|
# Usage |
|
|
|
Currently to use this model you can either rely on Hugging Face transformers library or [BitNet](https://github.com/microsoft/BitNet) library. There are multiple ways to interact with the model depending on your target usage. For each of the Falcon-E series model, you have three variants: the BitNet model, the prequantized checkpoint for fine-tuning and the `bfloat16` version of the BitNet model. |
|
|
|
### Inference |
|
|
|
#### BitNet |
|
|
|
``` |
|
git clone https://github.com/microsoft/BitNet && cd BitNet |
|
pip install -r requirements.txt |
|
huggingface-cli download tiiuae/Falcon-E-3B-Instruct-GGUF ggml-model-i2_s.gguf --local-dir models/Falcon-E-3B-Instruct/ |
|
python run_inference.py -m models/Falcon-E-3B-Instruct/ggml-model-i2_s.gguf -p "You are a helpful assistant" -cnv |
|
``` |
|
|
|
### Fine-tuning |
|
|
|
For fine-tuning the model, you should load the `prequantized` revision of the model and use the `onebitllms` Python package: |
|
|
|
```diff |
|
import torch |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from trl import SFTTrainer |
|
+ from onebitllms import replace_linear_with_bitnet_linear, quantize_to_1bit |
|
|
|
model_id = "tiiuae/Falcon-E-1B-Base" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, revision="prequantized") |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
+ revision="prequantized" |
|
) |
|
+ model = replace_linear_with_bitnet_linear(model) |
|
|
|
trainer = SFTTrainer( |
|
model, |
|
... |
|
) |
|
|
|
trainer.train() |
|
|
|
+ quantize_to_1bit(output_directory) |
|
``` |
|
|
|
# Evaluation |
|
|
|
We report in the following table our internal pipeline benchmarks: |
|
|
|
**Note evaluation results are normalized score from former Hugging Face leaderboard v2 tasks** |
|
|
|
<details> |
|
<summary class="bold"> For 1B scale models and below </summary> |
|
|
|
| Model | Nb Params | Mem Footprint | IFEVAL | Math-Hard | GPQA | MuSR | BBH | MMLU-Pro | Avg. | |
|
| -------- | ------- | ------- | ------- | ------ | ----- | ----- | ----- | ------ | ---- | |
|
| Qwen-2.5-0.5B | 0.5B | 1GB | 16.27 | 3.93 | 0.0 | 2.08 | 6.95 | 10.06 | 6.55 | |
|
| SmolLM2-360M | 0.36B | 720MB | 21.15 | 1.21 | 0.0 | 7.73 | 5.54 | 1.88 | 6.25 | |
|
| Qwen-2.5-1.5B | 1.5B | 3.1GB | 26.74 | 9.14 | 16.66 | 5.27 | 20.61 | 4.7 | 13.85 | |
|
| Llama-3.2-1B | 1.24B | 2.47GB | 14.78 | 1.21 | 4.37 | 2.56 | 2.26 | 0 | 4.2 | |
|
| SmolLM2-1.7B | 1.7B | 3.4GB | 24.4 | 2.64 | 9.3 | 4.6 | 12.64 | 3.91 | 9.58 | |
|
| Falcon-3-1B-Base | 1.5B | 3GB | 24.28 | 3.32 | 11.34 | 9.71 | 6.76 | 3.91 | 9.89 | |
|
| Hymba-1.5B-Base | 1.5B | 3GB | 22.95 | 1.36 | 7.69 | 5.18 | 10.25 | 0.78 | 8.04 | |
|
| Falcon-E-1B-Base | 1.8B | **635MB** | 32.9 | 10.97 | 2.8 | 3.65 | 12.28 | 17.82 | 13.40 | |
|
|
|
</details> |
|
|
|
|
|
<details> |
|
<summary class="bold"> For 3B scale models </summary> |
|
|
|
| Model | Nb Params | Mem Footprint | IFEVAL | Math-Hard | GPQA | MuSR | BBH | MMLU-Pro | Avg. | |
|
| -------- | ------- | ------- | ------- | ------ | ----- | ----- | ----- | ------ | ---- | |
|
| Falcon-3-3B-Base | 3B | 6.46GB | 15.74 | 11.78 | 21.58 | 6.27 | 18.09 | 6.26 | 15.74 | |
|
| Qwen2.5-3B | 3B | 6.17GB | 26.9 | 14.8 | 24.3 | 11.76 | 24.48 | 6.38 | 18.1 | |
|
| Falcon-E-3B-Base | 3B | **955MB** | 36.67 | 13.45 | 8.67 | 4.14 | 19.83 | 27.16 | 18.32 | |
|
|
|
</details> |
|
|
|
Below are the results for instruction fine-tuned models: |
|
|
|
<details> |
|
<summary class="bold"> For 1B scale models and below </summary> |
|
|
|
| Model | Nb Params | Mem Footprint | IFEVAL | Math-Hard | GPQA | MuSR | BBH | MMLU-Pro | Avg. | |
|
| -------- | ------- | ------- | ------- | ------ | ----- | ----- | ----- | ------ | ---- | |
|
| Qwen-2.5-0.5B-Instruct | 500M | 1GB | 30.71 | 0 | 8.43 | 0.94 | 7.75 | 0 | 6.59 | |
|
| SmolLM2-360M-Instruct | 360M | 720MB | 38.42 | 1.51 | 4.17 | 2.77 | 1.3 | 0.67 | 8.14 | |
|
| Qwen-2.5-1.5B-Instruct | 1.5B | 3.1GB | 44.76 | 22.05 | 19.81 | 3.19 | 19.99 | 0.78 | 18.43 | |
|
| SmolLM2-1.7B | 1.7B | 3.4GB | 53.68 | 5.82 | 10.92 | 4.1 | 11.71 | 0 | 15.02 | |
|
| Falcon-3-1B-Instruct | 1.5B | 3GB | 55.57 | 6.34 | 12.96 | 10.56 | 9.32 | 2.24 | 16.16 | |
|
| Hymba-1.5B-Instruct | 1.5B | 3GB | 60.09 | 2.72 | 4.59 | 1.05 | 11.56 | 5.515 | 14.19 | |
|
| Falcon-E-1B-Instruct | 1.8B | **635MB** | 54.35 | 9.12 | 16.5 | 2.51 | 19.42 | 9.64 | 18.59 | |
|
|
|
</details> |
|
|
|
|
|
<details> |
|
<summary class="bold"> For 3B scale models </summary> |
|
|
|
| Model | Nb Params | Mem Footprint | IFEVAL | Math-Hard | GPQA | MuSR | BBH | MMLU-Pro | Avg. | |
|
| -------- | ------- | ------- | ------- | ------ | ----- | ----- | ----- | ------ | ---- | |
|
| Falcon-3-3B-Instruct | 3B | 6.46GB | 69.77 | 25 | 26.29 | 11.13 | 22.28 | 5.15 | 26.6 | |
|
| Qwen2.5-3B-Instruct | 3B | 6.17GB | 64.75 | 36.78 | 25.8 | 7.57 | 25.05 | 3.02 | 27.16 | |
|
| Falcon-E-3B-Instruct | 3B | **955MB** | 60.97 | 15.3 | 23.59 | 2.12 | 26.45 | 7.45 | 22.64666667 | |
|
|
|
</details> |
|
|
|
|
|
## Useful links |
|
|
|
- View [our release blogpost](https://falcon-lm.github.io/blog/falcon-edge/). |
|
- Learn more about [`onebitllms` library](https://github.com/tiiuae/onebitllms). |
|
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers. |
|
|
|
## Citation |
|
|
|
If the Falcon-E family of models were helpful to your work, feel free to give us a cite. |
|
|
|
``` |
|
@misc{tiionebitllms, |
|
title = {Falcon-E, a series of powerful, universal and fine-tunable 1.58bit language models.}, |
|
author = {Falcon-LLM Team}, |
|
month = {April}, |
|
url = {https://falcon-lm.github.io/blog/falcon-edge}, |
|
year = {2025} |
|
} |
|
``` |