Mistral_Sparse_pretraining_80_percent_10000
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the openwebtext dataset. It achieves the following results on the evaluation set:
- Loss: 0.6872
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 0
- distributed_type: multi-GPU
- num_devices: 6
- gradient_accumulation_steps: 2
- total_train_batch_size: 96
- total_eval_batch_size: 192
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 10000
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7461 | 0.05 | 50 | 1.7009 |
1.4034 | 0.1 | 100 | 1.3910 |
1.2302 | 0.15 | 150 | 1.2330 |
1.1363 | 0.19 | 200 | 1.1354 |
1.0699 | 0.24 | 250 | 1.0723 |
1.0316 | 0.29 | 300 | 1.0284 |
1.0044 | 0.34 | 350 | 0.9943 |
0.9719 | 0.39 | 400 | 0.9668 |
0.9391 | 0.44 | 450 | 0.9430 |
0.9194 | 0.48 | 500 | 0.9249 |
0.9131 | 0.53 | 550 | 0.9092 |
0.877 | 0.58 | 600 | 0.8953 |
0.8757 | 0.63 | 650 | 0.8852 |
0.8644 | 0.68 | 700 | 0.8749 |
0.8625 | 0.73 | 750 | 0.8679 |
0.867 | 0.78 | 800 | 0.8594 |
0.852 | 0.82 | 850 | 0.8529 |
0.8482 | 0.87 | 900 | 0.8473 |
0.8372 | 0.92 | 950 | 0.8421 |
0.8391 | 0.97 | 1000 | 0.8366 |
0.8209 | 1.02 | 1050 | 0.8327 |
0.8172 | 1.07 | 1100 | 0.8275 |
0.8094 | 1.11 | 1150 | 0.8247 |
0.8107 | 1.16 | 1200 | 0.8210 |
0.8137 | 1.21 | 1250 | 0.8168 |
0.8122 | 1.26 | 1300 | 0.8143 |
0.8047 | 1.31 | 1350 | 0.8115 |
0.804 | 1.36 | 1400 | 0.8083 |
0.7955 | 1.41 | 1450 | 0.8062 |
0.7939 | 1.45 | 1500 | 0.8040 |
0.7835 | 1.5 | 1550 | 0.8019 |
0.7983 | 1.55 | 1600 | 0.8001 |
0.7953 | 1.6 | 1650 | 0.7975 |
0.7903 | 1.65 | 1700 | 0.7945 |
0.7864 | 1.7 | 1750 | 0.7938 |
0.7972 | 1.75 | 1800 | 0.7914 |
0.7855 | 1.79 | 1850 | 0.7905 |
0.7834 | 1.84 | 1900 | 0.7878 |
0.7812 | 1.89 | 1950 | 0.7854 |
0.7865 | 1.94 | 2000 | 0.7847 |
0.7875 | 1.99 | 2050 | 0.7837 |
0.7764 | 2.04 | 2100 | 0.7815 |
0.7676 | 2.08 | 2150 | 0.7807 |
0.7716 | 2.13 | 2200 | 0.7796 |
0.777 | 2.18 | 2250 | 0.7781 |
0.7706 | 2.23 | 2300 | 0.7769 |
0.7669 | 2.28 | 2350 | 0.7748 |
0.771 | 2.33 | 2400 | 0.7742 |
0.7501 | 2.38 | 2450 | 0.7728 |
0.7653 | 2.42 | 2500 | 0.7713 |
0.7715 | 2.47 | 2550 | 0.7699 |
0.7588 | 2.52 | 2600 | 0.7694 |
0.7665 | 2.57 | 2650 | 0.7676 |
0.7616 | 2.62 | 2700 | 0.7658 |
0.7597 | 2.67 | 2750 | 0.7654 |
0.756 | 2.71 | 2800 | 0.7644 |
0.7517 | 2.76 | 2850 | 0.7628 |
0.7561 | 2.81 | 2900 | 0.7628 |
0.7413 | 2.86 | 2950 | 0.7620 |
0.7545 | 2.91 | 3000 | 0.7603 |
0.7442 | 2.96 | 3050 | 0.7592 |
0.7454 | 3.01 | 3100 | 0.7589 |
0.7575 | 3.05 | 3150 | 0.7583 |
0.739 | 3.1 | 3200 | 0.7571 |
0.7446 | 3.15 | 3250 | 0.7558 |
0.7428 | 3.2 | 3300 | 0.7557 |
0.737 | 3.25 | 3350 | 0.7553 |
0.7512 | 3.3 | 3400 | 0.7536 |
0.7447 | 3.34 | 3450 | 0.7525 |
0.7417 | 3.39 | 3500 | 0.7525 |
0.7403 | 3.44 | 3550 | 0.7512 |
0.761 | 3.49 | 3600 | 0.7502 |
0.7475 | 3.54 | 3650 | 0.7498 |
0.7535 | 3.59 | 3700 | 0.7486 |
0.733 | 3.64 | 3750 | 0.7483 |
0.7347 | 3.68 | 3800 | 0.7470 |
0.7439 | 3.73 | 3850 | 0.7470 |
0.7417 | 3.78 | 3900 | 0.7460 |
0.7383 | 3.83 | 3950 | 0.7460 |
0.7316 | 3.88 | 4000 | 0.7450 |
0.7273 | 3.93 | 4050 | 0.7442 |
0.7376 | 3.97 | 4100 | 0.7440 |
0.73 | 4.02 | 4150 | 0.7424 |
0.732 | 4.07 | 4200 | 0.7429 |
0.7278 | 4.12 | 4250 | 0.7419 |
0.721 | 4.17 | 4300 | 0.7416 |
0.7309 | 4.22 | 4350 | 0.7410 |
0.7273 | 4.27 | 4400 | 0.7400 |
0.7297 | 4.31 | 4450 | 0.7395 |
0.7321 | 4.36 | 4500 | 0.7385 |
0.7348 | 4.41 | 4550 | 0.7381 |
0.7251 | 4.46 | 4600 | 0.7371 |
0.7175 | 4.51 | 4650 | 0.7372 |
0.7356 | 4.56 | 4700 | 0.7368 |
0.7306 | 4.6 | 4750 | 0.7363 |
0.7248 | 4.65 | 4800 | 0.7359 |
0.7266 | 4.7 | 4850 | 0.7343 |
0.7243 | 4.75 | 4900 | 0.7349 |
0.7256 | 4.8 | 4950 | 0.7338 |
0.7301 | 4.85 | 5000 | 0.7335 |
0.7266 | 4.9 | 5050 | 0.7327 |
0.7229 | 4.94 | 5100 | 0.7321 |
0.7355 | 4.99 | 5150 | 0.7315 |
0.7207 | 5.04 | 5200 | 0.7317 |
0.7157 | 5.09 | 5250 | 0.7314 |
0.7214 | 5.14 | 5300 | 0.7299 |
0.7104 | 5.19 | 5350 | 0.7304 |
0.7059 | 5.24 | 5400 | 0.7296 |
0.7181 | 5.28 | 5450 | 0.7295 |
0.7226 | 5.33 | 5500 | 0.7286 |
0.7077 | 5.38 | 5550 | 0.7282 |
0.7239 | 5.43 | 5600 | 0.7276 |
0.7159 | 5.48 | 5650 | 0.7277 |
0.7169 | 5.53 | 5700 | 0.7271 |
0.7101 | 5.57 | 5750 | 0.7269 |
0.7146 | 5.62 | 5800 | 0.7262 |
0.7191 | 5.67 | 5850 | 0.7265 |
0.7124 | 5.72 | 5900 | 0.7248 |
0.7085 | 5.77 | 5950 | 0.7238 |
0.7052 | 5.82 | 6000 | 0.7235 |
0.7222 | 5.87 | 6050 | 0.7222 |
0.7089 | 5.91 | 6100 | 0.7221 |
0.7088 | 5.96 | 6150 | 0.7222 |
0.7017 | 6.01 | 6200 | 0.7218 |
0.7079 | 6.06 | 6250 | 0.7218 |
0.7209 | 6.11 | 6300 | 0.7211 |
0.691 | 6.16 | 6350 | 0.7210 |
0.7035 | 6.2 | 6400 | 0.7203 |
0.7075 | 6.25 | 6450 | 0.7207 |
0.7036 | 6.3 | 6500 | 0.7200 |
0.7023 | 6.35 | 6550 | 0.7189 |
0.7201 | 6.4 | 6600 | 0.7192 |
0.7021 | 6.45 | 6650 | 0.7188 |
0.6971 | 6.5 | 6700 | 0.7174 |
0.7087 | 6.54 | 6750 | 0.7184 |
0.7044 | 6.59 | 6800 | 0.7176 |
0.6921 | 6.64 | 6850 | 0.7179 |
0.7079 | 6.69 | 6900 | 0.7166 |
0.6908 | 6.74 | 6950 | 0.7158 |
0.687 | 6.79 | 7000 | 0.7158 |
0.696 | 6.83 | 7050 | 0.7148 |
0.6954 | 6.88 | 7100 | 0.7152 |
0.7103 | 6.93 | 7150 | 0.7143 |
0.6999 | 6.98 | 7200 | 0.7140 |
0.699 | 7.03 | 7250 | 0.7138 |
0.6959 | 7.08 | 7300 | 0.7138 |
0.6871 | 7.13 | 7350 | 0.7122 |
0.6941 | 7.17 | 7400 | 0.7131 |
0.6931 | 7.22 | 7450 | 0.7132 |
0.707 | 7.27 | 7500 | 0.7110 |
0.6911 | 7.32 | 7550 | 0.7122 |
0.7036 | 7.37 | 7600 | 0.7113 |
0.7105 | 7.42 | 7650 | 0.7107 |
0.7035 | 7.46 | 7700 | 0.7108 |
0.6901 | 7.51 | 7750 | 0.7113 |
0.6944 | 7.56 | 7800 | 0.7096 |
0.6927 | 7.61 | 7850 | 0.7093 |
0.7052 | 7.66 | 7900 | 0.7090 |
0.7046 | 7.71 | 7950 | 0.7082 |
0.6949 | 7.76 | 8000 | 0.7082 |
0.6888 | 7.8 | 8050 | 0.7071 |
0.6916 | 7.85 | 8100 | 0.7071 |
0.6937 | 7.9 | 8150 | 0.7067 |
0.7077 | 7.95 | 8200 | 0.7066 |
0.6847 | 8.0 | 8250 | 0.7057 |
0.6908 | 8.05 | 8300 | 0.7056 |
0.6813 | 8.1 | 8350 | 0.7060 |
0.6756 | 8.14 | 8400 | 0.7055 |
0.7006 | 8.19 | 8450 | 0.7052 |
0.6842 | 8.24 | 8500 | 0.7035 |
0.6851 | 8.29 | 8550 | 0.7044 |
0.6944 | 8.34 | 8600 | 0.7042 |
0.6929 | 8.39 | 8650 | 0.7040 |
0.6924 | 8.43 | 8700 | 0.7037 |
0.6843 | 8.48 | 8750 | 0.7037 |
0.7005 | 8.53 | 8800 | 0.7028 |
0.6795 | 8.58 | 8850 | 0.7022 |
0.6946 | 8.63 | 8900 | 0.7019 |
0.6761 | 8.68 | 8950 | 0.7016 |
0.6817 | 8.73 | 9000 | 0.7012 |
0.6838 | 8.77 | 9050 | 0.7012 |
0.6877 | 8.82 | 9100 | 0.7006 |
0.6812 | 8.87 | 9150 | 0.7004 |
0.6966 | 8.92 | 9200 | 0.7005 |
0.6778 | 8.97 | 9250 | 0.6993 |
0.6844 | 9.02 | 9300 | 0.6991 |
0.6853 | 9.06 | 9350 | 0.7000 |
0.6839 | 9.11 | 9400 | 0.6998 |
0.6813 | 9.16 | 9450 | 0.6984 |
0.6903 | 9.21 | 9500 | 0.6985 |
0.6819 | 9.26 | 9550 | 0.6987 |
0.6749 | 9.31 | 9600 | 0.6980 |
0.6782 | 9.36 | 9650 | 0.6979 |
0.6805 | 9.4 | 9700 | 0.6975 |
0.6907 | 9.45 | 9750 | 0.6974 |
0.6854 | 9.5 | 9800 | 0.6967 |
0.6803 | 9.55 | 9850 | 0.6969 |
0.6854 | 9.6 | 9900 | 0.6964 |
0.6761 | 9.65 | 9950 | 0.6966 |
0.6939 | 9.69 | 10000 | 0.6959 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 3
Model tree for thrunlab/Mistral_Sparse_pretraining_80_percent_10000
Base model
mistralai/Mistral-7B-v0.1
Finetuned
mistralai/Mistral-7B-Instruct-v0.1