Edit model card

Mistral_Sparse_pretraining_80_percent_10000

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the openwebtext dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6872

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 32
  • seed: 0
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 96
  • total_eval_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss
1.7461 0.05 50 1.7009
1.4034 0.1 100 1.3910
1.2302 0.15 150 1.2330
1.1363 0.19 200 1.1354
1.0699 0.24 250 1.0723
1.0316 0.29 300 1.0284
1.0044 0.34 350 0.9943
0.9719 0.39 400 0.9668
0.9391 0.44 450 0.9430
0.9194 0.48 500 0.9249
0.9131 0.53 550 0.9092
0.877 0.58 600 0.8953
0.8757 0.63 650 0.8852
0.8644 0.68 700 0.8749
0.8625 0.73 750 0.8679
0.867 0.78 800 0.8594
0.852 0.82 850 0.8529
0.8482 0.87 900 0.8473
0.8372 0.92 950 0.8421
0.8391 0.97 1000 0.8366
0.8209 1.02 1050 0.8327
0.8172 1.07 1100 0.8275
0.8094 1.11 1150 0.8247
0.8107 1.16 1200 0.8210
0.8137 1.21 1250 0.8168
0.8122 1.26 1300 0.8143
0.8047 1.31 1350 0.8115
0.804 1.36 1400 0.8083
0.7955 1.41 1450 0.8062
0.7939 1.45 1500 0.8040
0.7835 1.5 1550 0.8019
0.7983 1.55 1600 0.8001
0.7953 1.6 1650 0.7975
0.7903 1.65 1700 0.7945
0.7864 1.7 1750 0.7938
0.7972 1.75 1800 0.7914
0.7855 1.79 1850 0.7905
0.7834 1.84 1900 0.7878
0.7812 1.89 1950 0.7854
0.7865 1.94 2000 0.7847
0.7875 1.99 2050 0.7837
0.7764 2.04 2100 0.7815
0.7676 2.08 2150 0.7807
0.7716 2.13 2200 0.7796
0.777 2.18 2250 0.7781
0.7706 2.23 2300 0.7769
0.7669 2.28 2350 0.7748
0.771 2.33 2400 0.7742
0.7501 2.38 2450 0.7728
0.7653 2.42 2500 0.7713
0.7715 2.47 2550 0.7699
0.7588 2.52 2600 0.7694
0.7665 2.57 2650 0.7676
0.7616 2.62 2700 0.7658
0.7597 2.67 2750 0.7654
0.756 2.71 2800 0.7644
0.7517 2.76 2850 0.7628
0.7561 2.81 2900 0.7628
0.7413 2.86 2950 0.7620
0.7545 2.91 3000 0.7603
0.7442 2.96 3050 0.7592
0.7454 3.01 3100 0.7589
0.7575 3.05 3150 0.7583
0.739 3.1 3200 0.7571
0.7446 3.15 3250 0.7558
0.7428 3.2 3300 0.7557
0.737 3.25 3350 0.7553
0.7512 3.3 3400 0.7536
0.7447 3.34 3450 0.7525
0.7417 3.39 3500 0.7525
0.7403 3.44 3550 0.7512
0.761 3.49 3600 0.7502
0.7475 3.54 3650 0.7498
0.7535 3.59 3700 0.7486
0.733 3.64 3750 0.7483
0.7347 3.68 3800 0.7470
0.7439 3.73 3850 0.7470
0.7417 3.78 3900 0.7460
0.7383 3.83 3950 0.7460
0.7316 3.88 4000 0.7450
0.7273 3.93 4050 0.7442
0.7376 3.97 4100 0.7440
0.73 4.02 4150 0.7424
0.732 4.07 4200 0.7429
0.7278 4.12 4250 0.7419
0.721 4.17 4300 0.7416
0.7309 4.22 4350 0.7410
0.7273 4.27 4400 0.7400
0.7297 4.31 4450 0.7395
0.7321 4.36 4500 0.7385
0.7348 4.41 4550 0.7381
0.7251 4.46 4600 0.7371
0.7175 4.51 4650 0.7372
0.7356 4.56 4700 0.7368
0.7306 4.6 4750 0.7363
0.7248 4.65 4800 0.7359
0.7266 4.7 4850 0.7343
0.7243 4.75 4900 0.7349
0.7256 4.8 4950 0.7338
0.7301 4.85 5000 0.7335
0.7266 4.9 5050 0.7327
0.7229 4.94 5100 0.7321
0.7355 4.99 5150 0.7315
0.7207 5.04 5200 0.7317
0.7157 5.09 5250 0.7314
0.7214 5.14 5300 0.7299
0.7104 5.19 5350 0.7304
0.7059 5.24 5400 0.7296
0.7181 5.28 5450 0.7295
0.7226 5.33 5500 0.7286
0.7077 5.38 5550 0.7282
0.7239 5.43 5600 0.7276
0.7159 5.48 5650 0.7277
0.7169 5.53 5700 0.7271
0.7101 5.57 5750 0.7269
0.7146 5.62 5800 0.7262
0.7191 5.67 5850 0.7265
0.7124 5.72 5900 0.7248
0.7085 5.77 5950 0.7238
0.7052 5.82 6000 0.7235
0.7222 5.87 6050 0.7222
0.7089 5.91 6100 0.7221
0.7088 5.96 6150 0.7222
0.7017 6.01 6200 0.7218
0.7079 6.06 6250 0.7218
0.7209 6.11 6300 0.7211
0.691 6.16 6350 0.7210
0.7035 6.2 6400 0.7203
0.7075 6.25 6450 0.7207
0.7036 6.3 6500 0.7200
0.7023 6.35 6550 0.7189
0.7201 6.4 6600 0.7192
0.7021 6.45 6650 0.7188
0.6971 6.5 6700 0.7174
0.7087 6.54 6750 0.7184
0.7044 6.59 6800 0.7176
0.6921 6.64 6850 0.7179
0.7079 6.69 6900 0.7166
0.6908 6.74 6950 0.7158
0.687 6.79 7000 0.7158
0.696 6.83 7050 0.7148
0.6954 6.88 7100 0.7152
0.7103 6.93 7150 0.7143
0.6999 6.98 7200 0.7140
0.699 7.03 7250 0.7138
0.6959 7.08 7300 0.7138
0.6871 7.13 7350 0.7122
0.6941 7.17 7400 0.7131
0.6931 7.22 7450 0.7132
0.707 7.27 7500 0.7110
0.6911 7.32 7550 0.7122
0.7036 7.37 7600 0.7113
0.7105 7.42 7650 0.7107
0.7035 7.46 7700 0.7108
0.6901 7.51 7750 0.7113
0.6944 7.56 7800 0.7096
0.6927 7.61 7850 0.7093
0.7052 7.66 7900 0.7090
0.7046 7.71 7950 0.7082
0.6949 7.76 8000 0.7082
0.6888 7.8 8050 0.7071
0.6916 7.85 8100 0.7071
0.6937 7.9 8150 0.7067
0.7077 7.95 8200 0.7066
0.6847 8.0 8250 0.7057
0.6908 8.05 8300 0.7056
0.6813 8.1 8350 0.7060
0.6756 8.14 8400 0.7055
0.7006 8.19 8450 0.7052
0.6842 8.24 8500 0.7035
0.6851 8.29 8550 0.7044
0.6944 8.34 8600 0.7042
0.6929 8.39 8650 0.7040
0.6924 8.43 8700 0.7037
0.6843 8.48 8750 0.7037
0.7005 8.53 8800 0.7028
0.6795 8.58 8850 0.7022
0.6946 8.63 8900 0.7019
0.6761 8.68 8950 0.7016
0.6817 8.73 9000 0.7012
0.6838 8.77 9050 0.7012
0.6877 8.82 9100 0.7006
0.6812 8.87 9150 0.7004
0.6966 8.92 9200 0.7005
0.6778 8.97 9250 0.6993
0.6844 9.02 9300 0.6991
0.6853 9.06 9350 0.7000
0.6839 9.11 9400 0.6998
0.6813 9.16 9450 0.6984
0.6903 9.21 9500 0.6985
0.6819 9.26 9550 0.6987
0.6749 9.31 9600 0.6980
0.6782 9.36 9650 0.6979
0.6805 9.4 9700 0.6975
0.6907 9.45 9750 0.6974
0.6854 9.5 9800 0.6967
0.6803 9.55 9850 0.6969
0.6854 9.6 9900 0.6964
0.6761 9.65 9950 0.6966
0.6939 9.69 10000 0.6959

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
3
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for thrunlab/Mistral_Sparse_pretraining_80_percent_10000

Finetuned
(141)
this model

Dataset used to train thrunlab/Mistral_Sparse_pretraining_80_percent_10000