mDeBERTa-v3-base-finetuned-nli-jnli
This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7739
- Accuracy: 0.6808
- F1: 0.6742
Model description
More information needed
Intended uses & limitations
zero-shot classification
from transformers import pipeline
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli"
classifier = pipeline("zero-shot-classification", model=model_name)
text = ["今日の天気を教えて", "ニュースある?", "予定をチェックして", "ドル円は?"]
labels = ["天気", "ニュース", "金融", "予定"]
for t in text:
output = classifier(t, labels, multi_label=False)
print(output)
NLI use-case
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
model_name = "thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
premise = "NY Yankees is the professional baseball team in America."
hypothesis = "メジャーリーグのチームは、日本ではニューヨークヤンキースが有名だ。"
inputs = tokenizer(premise, hypothesis, truncation=True, return_tensors="pt")
with torch.no_grad():
output = model(**inputs)
preds = torch.softmax(output["logits"][0], -1).tolist()
label_names = ["entailment", "neutral", "contradiction"]
result = {name: round(float(pred) * 100, 1) for pred, name in zip(preds, label_names)}
print(result)
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.753 | 0.53 | 5000 | 0.8758 | 0.6105 | 0.6192 |
0.5947 | 1.07 | 10000 | 0.6619 | 0.7054 | 0.7035 |
0.5791 | 1.6 | 15000 | 0.7739 | 0.6808 | 0.6742 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 23,428
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for thkkvui/mDeBERTa-v3-base-finetuned-nli-jnli
Base model
microsoft/mdeberta-v3-base