codebert-java-inconsistency

This model is a fine-tuned version of microsoft/codebert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3543
  • Accuracy: 0.9167
  • F1: 0.9183
  • Precision: 0.9235
  • Recall: 0.9167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
1.4625 3.1290 50 0.8954 0.7531 0.7554 0.7765 0.7531
0.5834 6.2581 100 0.5559 0.8189 0.8241 0.8483 0.8189
0.2858 9.3871 150 0.4046 0.8930 0.8945 0.8995 0.8930
0.1624 12.5161 200 0.4461 0.8642 0.8661 0.8750 0.8642
0.1084 15.6452 250 0.4012 0.9012 0.9038 0.9123 0.9012
0.074 18.7742 300 0.4689 0.8765 0.8817 0.8972 0.8765
0.0574 21.9032 350 0.4885 0.8807 0.8845 0.8970 0.8807
0.0452 25.0 400 0.4900 0.8848 0.8888 0.9011 0.8848
0.0396 28.1290 450 0.4896 0.8765 0.8805 0.8934 0.8765

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
125M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for thiomajid/codebert-java-inconsistency

Finetuned
(42)
this model