Edit model card

fine-tuned-model

This model is a fine-tuned version of obi/deid_roberta_i2b2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2126
  • Model Preparation Time: 0.0061
  • Precision: 0.9143
  • Recall: 0.9156
  • F1: 0.9132
  • Accuracy: 0.9156

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Precision Recall F1 Accuracy
0.4678 1.0 125 0.4248 0.0061 0.7737 0.8229 0.7836 0.8229
0.3877 2.0 250 0.4008 0.0061 0.7886 0.8282 0.8060 0.8282
0.3391 3.0 375 0.3132 0.0061 0.8213 0.8672 0.8389 0.8672
0.3091 4.0 500 0.3124 0.0061 0.8334 0.8597 0.8419 0.8597
0.2572 5.0 625 0.2570 0.0061 0.8675 0.8911 0.8739 0.8911
0.2368 6.0 750 0.2270 0.0061 0.8908 0.9084 0.8973 0.9084
0.2115 7.0 875 0.2219 0.0061 0.8960 0.9081 0.9017 0.9081
0.1949 8.0 1000 0.2325 0.0061 0.8993 0.9044 0.8991 0.9044
0.1843 9.0 1125 0.2218 0.0061 0.9035 0.9103 0.9059 0.9103
0.1691 10.0 1250 0.2126 0.0061 0.9143 0.9156 0.9132 0.9156

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu124
  • Datasets 2.14.5
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
354M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for theekshana/deid-roberta-i2b2-NER-medical-reports

Finetuned
(1)
this model