See axolotl config
axolotl version: 0.11.0
base_model: Qwen/Qwen3-1.7B
# plugins:
# - axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
strict: false
# plugins:
# - axolotl.integrations.liger.LigerPlugin
# liger_rope: true
# liger_rms_norm: true
# liger_glu_activation: true
# liger_layer_norm: true
# liger_fused_linear_cross_entropy: true
datasets:
- path: sumuks/essential-web-v1.0-sample-100M-with-cleaned-responses-sft
type: chat_template
field_messages: conversations
split: train
val_set_size: 0.05
dataset_prepared_path: dataset/prepared_dataset_1.7b
train_on_inputs: false
output_dir: ./output/1.7B-Instruct-Tuned-New-Data
chat_template: qwen3
sequence_len: 8192
sample_packing: true
eval_sample_packing: true
# pad_to_sequence_len: true
wandb_project: essential-web-sft
wandb_name: qwen3-1.7b-sft-new-data
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
flash_attention: true
micro_batch_size: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
num_epochs: 1
load_best_model_at_end: true
metric_for_best_model: loss
greater_is_better: false
early_stopping_patience: 3
bf16: auto
tf32: true
logging_steps: 5
deepspeed: ./configs_prod/zero3.json
save_steps: 500
eval_steps: 500
warmup_ratio: 0.05
# save_first_step: true
output/1.7B-Instruct-Tuned-New-Data
This model is a fine-tuned version of Qwen/Qwen3-1.7B on the sumuks/essential-web-v1.0-sample-100M-with-cleaned-responses-sft dataset. It achieves the following results on the evaluation set:
- Loss: 0.3669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 164
- training_steps: 3297
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0 | 0 | 0.8829 |
0.3689 | 0.1517 | 500 | 0.4088 |
0.3919 | 0.3033 | 1000 | 0.3952 |
0.386 | 0.4550 | 1500 | 0.3839 |
0.409 | 0.6066 | 2000 | 0.3755 |
0.3473 | 0.7583 | 2500 | 0.3694 |
0.3518 | 0.9099 | 3000 | 0.3669 |
Framework versions
- Transformers 4.53.1
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 17