morriszms's picture
Update README.md
d6014a2 verified
metadata
license: mit
datasets:
  - trendmicro-ailab/Primus-Reasoning
  - trendmicro-ailab/Primus-Seed
  - trendmicro-ailab/Primus-FineWeb
  - trendmicro-ailab/Primus-Instruct
language:
  - en
base_model: trendmicro-ailab/Llama-Primus-Reasoning
pipeline_tag: text-generation
library_name: transformers
tags:
  - cybersecurity
  - pretraining
  - TensorBlock
  - GGUF
extra_gated_fields:
  Affiliation: text
  Country: country
  I want to use this model for:
    type: select
    options:
      - Research
      - Commercial
      - label: Other
        value: other
  Job title:
    type: select
    options:
      - Student
      - Research graduate
      - AI researcher
      - AI developer/engineer
      - Cybersecurity researcher
      - Reporter
      - Other
  geo: ip_location
TensorBlock

Website Twitter Discord GitHub Telegram

trendmicro-ailab/Llama-Primus-Reasoning - GGUF

This repo contains GGUF format model files for trendmicro-ailab/Llama-Primus-Reasoning.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b5165.

Our projects

Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€

Prompt template

<|begin_of_text|><|start_header_id|>system<|end_header_id|>

{system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>

{prompt}<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Model file specification

Filename Quant type File Size Description
Llama-Primus-Reasoning-Q2_K.gguf Q2_K 3.179 GB smallest, significant quality loss - not recommended for most purposes
Llama-Primus-Reasoning-Q3_K_S.gguf Q3_K_S 3.665 GB very small, high quality loss
Llama-Primus-Reasoning-Q3_K_M.gguf Q3_K_M 4.019 GB very small, high quality loss
Llama-Primus-Reasoning-Q3_K_L.gguf Q3_K_L 4.322 GB small, substantial quality loss
Llama-Primus-Reasoning-Q4_0.gguf Q4_0 4.661 GB legacy; small, very high quality loss - prefer using Q3_K_M
Llama-Primus-Reasoning-Q4_K_S.gguf Q4_K_S 4.693 GB small, greater quality loss
Llama-Primus-Reasoning-Q4_K_M.gguf Q4_K_M 4.921 GB medium, balanced quality - recommended
Llama-Primus-Reasoning-Q5_0.gguf Q5_0 5.599 GB legacy; medium, balanced quality - prefer using Q4_K_M
Llama-Primus-Reasoning-Q5_K_S.gguf Q5_K_S 5.599 GB large, low quality loss - recommended
Llama-Primus-Reasoning-Q5_K_M.gguf Q5_K_M 5.733 GB large, very low quality loss - recommended
Llama-Primus-Reasoning-Q6_K.gguf Q6_K 6.596 GB very large, extremely low quality loss
Llama-Primus-Reasoning-Q8_0.gguf Q8_0 8.541 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF --include "Llama-Primus-Reasoning-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/trendmicro-ailab_Llama-Primus-Reasoning-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'