
Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server
prithivMLmods/Evac-Opus-14B-Exp - GGUF
This repo contains GGUF format model files for prithivMLmods/Evac-Opus-14B-Exp.
The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b5165.
Our projects
Awesome MCP Servers | TensorBlock Studio |
---|---|
![]() |
![]() |
A comprehensive collection of Model Context Protocol (MCP) servers. | A lightweight, open, and extensible multi-LLM interaction studio. |
👀 See what we built 👀 | 👀 See what we built 👀 |
Prompt template
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
Model file specification
Filename | Quant type | File Size | Description |
---|---|---|---|
Evac-Opus-14B-Exp-Q2_K.gguf | Q2_K | 5.770 GB | smallest, significant quality loss - not recommended for most purposes |
Evac-Opus-14B-Exp-Q3_K_S.gguf | Q3_K_S | 6.660 GB | very small, high quality loss |
Evac-Opus-14B-Exp-Q3_K_M.gguf | Q3_K_M | 7.339 GB | very small, high quality loss |
Evac-Opus-14B-Exp-Q3_K_L.gguf | Q3_K_L | 7.925 GB | small, substantial quality loss |
Evac-Opus-14B-Exp-Q4_0.gguf | Q4_0 | 8.518 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
Evac-Opus-14B-Exp-Q4_K_S.gguf | Q4_K_S | 8.573 GB | small, greater quality loss |
Evac-Opus-14B-Exp-Q4_K_M.gguf | Q4_K_M | 8.988 GB | medium, balanced quality - recommended |
Evac-Opus-14B-Exp-Q5_0.gguf | Q5_0 | 10.267 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
Evac-Opus-14B-Exp-Q5_K_S.gguf | Q5_K_S | 10.267 GB | large, low quality loss - recommended |
Evac-Opus-14B-Exp-Q5_K_M.gguf | Q5_K_M | 10.509 GB | large, very low quality loss - recommended |
Evac-Opus-14B-Exp-Q6_K.gguf | Q6_K | 12.125 GB | very large, extremely low quality loss |
Evac-Opus-14B-Exp-Q8_0.gguf | Q8_0 | 15.702 GB | very large, extremely low quality loss - not recommended |
Downloading instruction
Command line
Firstly, install Huggingface Client
pip install -U "huggingface_hub[cli]"
Then, downoad the individual model file the a local directory
huggingface-cli download tensorblock/prithivMLmods_Evac-Opus-14B-Exp-GGUF --include "Evac-Opus-14B-Exp-Q2_K.gguf" --local-dir MY_LOCAL_DIR
If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf
), you can try:
huggingface-cli download tensorblock/prithivMLmods_Evac-Opus-14B-Exp-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
- Downloads last month
- 140
Hardware compatibility
Log In
to view the estimation
2-bit
3-bit
4-bit
5-bit
6-bit
8-bit
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for tensorblock/prithivMLmods_Evac-Opus-14B-Exp-GGUF
Base model
prithivMLmods/Calcium-Opus-14B-Elite2-R1
Finetuned
prithivMLmods/Primal-Opus-14B-Optimus-v1
Finetuned
prithivMLmods/Megatron-Opus-14B-Exp
Finetuned
prithivMLmods/Megatron-Corpus-14B-Exp
Finetuned
prithivMLmods/Elita-1
Finetuned
prithivMLmods/Evac-Opus-14B-Exp
Evaluation results
- averaged accuracy on IFEval (0-Shot)Open LLM Leaderboard59.160
- normalized accuracy on BBH (3-Shot)test set Open LLM Leaderboard49.580
- exact match on MATH Lvl 5 (4-Shot)test set Open LLM Leaderboard42.150
- acc_norm on GPQA (0-shot)Open LLM Leaderboard18.460
- acc_norm on MuSR (0-shot)Open LLM Leaderboard18.630
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard47.960