Transformers
GGUF
English
code
Mixture of Experts
TensorBlock
GGUF
Eval Results
Inference Endpoints
moe-x33-GGUF / README.md
morriszms's picture
Upload folder using huggingface_hub
e124f2f verified
metadata
language:
  - en
license: apache-2.0
library_name: transformers
tags:
  - code
  - moe
  - TensorBlock
  - GGUF
datasets:
  - andersonbcdefg/synthetic_retrieval_tasks
  - ise-uiuc/Magicoder-Evol-Instruct-110K
metrics:
  - code_eval
base_model: senseable/moe-x33
model-index:
  - name: moe-x33
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 26.19
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 26.44
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 24.93
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 51.14
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 50.99
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 0
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=senseable/moe-x33
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

senseable/moe-x33 - GGUF

This repo contains GGUF format model files for senseable/moe-x33.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
moe-x33-Q2_K.gguf Q2_K 21.625 GB smallest, significant quality loss - not recommended for most purposes
moe-x33-Q3_K_S.gguf Q3_K_S 25.425 GB very small, high quality loss
moe-x33-Q3_K_M.gguf Q3_K_M 28.280 GB very small, high quality loss
moe-x33-Q3_K_L.gguf Q3_K_L 30.763 GB small, substantial quality loss
moe-x33-Q4_0.gguf Q4_0 33.222 GB legacy; small, very high quality loss - prefer using Q3_K_M
moe-x33-Q4_K_S.gguf Q4_K_S 33.466 GB small, greater quality loss
moe-x33-Q4_K_M.gguf Q4_K_M 35.408 GB medium, balanced quality - recommended
moe-x33-Q5_0.gguf Q5_0 40.561 GB legacy; medium, balanced quality - prefer using Q4_K_M
moe-x33-Q5_K_S.gguf Q5_K_S 40.561 GB large, low quality loss - recommended
moe-x33-Q5_K_M.gguf Q5_K_M 41.687 GB large, very low quality loss - recommended
moe-x33-Q6_K.gguf Q6_K 48.358 GB very large, extremely low quality loss
moe-x33-Q8_0 Q8_0 42.254 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/moe-x33-GGUF --include "moe-x33-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/moe-x33-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'