morriszms's picture
Update README.md
ea20ae4 verified
metadata
license: apache-2.0
library_name: transformers
base_model: macadeliccc/laser-dolphin-mixtral-4x7b-dpo
tags:
  - TensorBlock
  - GGUF
model-index:
  - name: laser-dolphin-mixtral-4x7b-dpo
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 64.93
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.81
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 63.04
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 63.77
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.82
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 44.88
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-4x7b-dpo
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

macadeliccc/laser-dolphin-mixtral-4x7b-dpo - GGUF

This repo contains GGUF format model files for macadeliccc/laser-dolphin-mixtral-4x7b-dpo.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Our projects

Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
laser-dolphin-mixtral-4x7b-dpo-Q2_K.gguf Q2_K 8.843 GB smallest, significant quality loss - not recommended for most purposes
laser-dolphin-mixtral-4x7b-dpo-Q3_K_S.gguf Q3_K_S 10.433 GB very small, high quality loss
laser-dolphin-mixtral-4x7b-dpo-Q3_K_M.gguf Q3_K_M 11.580 GB very small, high quality loss
laser-dolphin-mixtral-4x7b-dpo-Q3_K_L.gguf Q3_K_L 12.544 GB small, substantial quality loss
laser-dolphin-mixtral-4x7b-dpo-Q4_0.gguf Q4_0 13.624 GB legacy; small, very high quality loss - prefer using Q3_K_M
laser-dolphin-mixtral-4x7b-dpo-Q4_K_S.gguf Q4_K_S 13.743 GB small, greater quality loss
laser-dolphin-mixtral-4x7b-dpo-Q4_K_M.gguf Q4_K_M 14.610 GB medium, balanced quality - recommended
laser-dolphin-mixtral-4x7b-dpo-Q5_0.gguf Q5_0 16.626 GB legacy; medium, balanced quality - prefer using Q4_K_M
laser-dolphin-mixtral-4x7b-dpo-Q5_K_S.gguf Q5_K_S 16.626 GB large, low quality loss - recommended
laser-dolphin-mixtral-4x7b-dpo-Q5_K_M.gguf Q5_K_M 17.134 GB large, very low quality loss - recommended
laser-dolphin-mixtral-4x7b-dpo-Q6_K.gguf Q6_K 19.817 GB very large, extremely low quality loss
laser-dolphin-mixtral-4x7b-dpo-Q8_0.gguf Q8_0 25.666 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/laser-dolphin-mixtral-4x7b-dpo-GGUF --include "laser-dolphin-mixtral-4x7b-dpo-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/laser-dolphin-mixtral-4x7b-dpo-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'