morriszms's picture
Upload folder using huggingface_hub
bb9128f verified
|
raw
history blame
5.13 kB
metadata
inference: false
language:
  - de
library_name: transformers
license: apache-2.0
model_creator: jphme
model_name: EM German
model_type: mistral
pipeline_tag: text-generation
prompt_template: 'Du bist ein hilfreicher Assistent. USER: Was ist 1+1? ASSISTANT:'
tags:
  - pytorch
  - german
  - deutsch
  - mistral
  - leolm
  - TensorBlock
  - GGUF
base_model: jphme/em_german_leo_mistral
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

jphme/em_german_leo_mistral - GGUF

This repo contains GGUF format model files for jphme/em_german_leo_mistral.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Prompt template

{system_prompt} USER: {prompt} ASSISTANT: 

Model file specification

Filename Quant type File Size Description
em_german_leo_mistral-Q2_K.gguf Q2_K 2.532 GB smallest, significant quality loss - not recommended for most purposes
em_german_leo_mistral-Q3_K_S.gguf Q3_K_S 2.947 GB very small, high quality loss
em_german_leo_mistral-Q3_K_M.gguf Q3_K_M 3.277 GB very small, high quality loss
em_german_leo_mistral-Q3_K_L.gguf Q3_K_L 3.560 GB small, substantial quality loss
em_german_leo_mistral-Q4_0.gguf Q4_0 3.827 GB legacy; small, very high quality loss - prefer using Q3_K_M
em_german_leo_mistral-Q4_K_S.gguf Q4_K_S 3.856 GB small, greater quality loss
em_german_leo_mistral-Q4_K_M.gguf Q4_K_M 4.068 GB medium, balanced quality - recommended
em_german_leo_mistral-Q5_0.gguf Q5_0 4.654 GB legacy; medium, balanced quality - prefer using Q4_K_M
em_german_leo_mistral-Q5_K_S.gguf Q5_K_S 4.654 GB large, low quality loss - recommended
em_german_leo_mistral-Q5_K_M.gguf Q5_K_M 4.779 GB large, very low quality loss - recommended
em_german_leo_mistral-Q6_K.gguf Q6_K 5.534 GB very large, extremely low quality loss
em_german_leo_mistral-Q8_0.gguf Q8_0 7.167 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/em_german_leo_mistral-GGUF --include "em_german_leo_mistral-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/em_german_leo_mistral-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'