morriszms's picture
Update README.md
0dcbb39 verified
metadata
library_name: transformers
license: apache-2.0
datasets:
  - BeastyZ/E5-R
language:
  - en
tags:
  - mteb
  - TensorBlock
  - GGUF
base_model: BeastyZ/e5-R-mistral-7b
model-index:
  - name: e5-R-mistral-7b
    results:
      - task:
          type: Retrieval
        dataset:
          name: MTEB ArguAna
          type: mteb/arguana
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 33.57
          - type: map_at_10
            value: 49.952000000000005
          - type: map_at_100
            value: 50.673
          - type: map_at_1000
            value: 50.674
          - type: map_at_3
            value: 44.915
          - type: map_at_5
            value: 47.876999999999995
          - type: mrr_at_1
            value: 34.211000000000006
          - type: mrr_at_10
            value: 50.19
          - type: mrr_at_100
            value: 50.905
          - type: mrr_at_1000
            value: 50.906
          - type: mrr_at_3
            value: 45.128
          - type: mrr_at_5
            value: 48.097
          - type: ndcg_at_1
            value: 33.57
          - type: ndcg_at_10
            value: 58.994
          - type: ndcg_at_100
            value: 61.806000000000004
          - type: ndcg_at_1000
            value: 61.824999999999996
          - type: ndcg_at_3
            value: 48.681000000000004
          - type: ndcg_at_5
            value: 54.001
          - type: precision_at_1
            value: 33.57
          - type: precision_at_10
            value: 8.784
          - type: precision_at_100
            value: 0.9950000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 19.867
          - type: precision_at_5
            value: 14.495
          - type: recall_at_1
            value: 33.57
          - type: recall_at_10
            value: 87.83800000000001
          - type: recall_at_100
            value: 99.502
          - type: recall_at_1000
            value: 99.644
          - type: recall_at_3
            value: 59.602
          - type: recall_at_5
            value: 72.475
          - type: main_score
            value: 58.994
      - task:
          type: Retrieval
        dataset:
          name: MTEB CQADupstackRetrieval
          type: mteb/cqadupstack
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.75
          - type: map_at_10
            value: 34.025
          - type: map_at_100
            value: 35.126000000000005
          - type: map_at_1000
            value: 35.219
          - type: map_at_3
            value: 31.607000000000003
          - type: map_at_5
            value: 32.962
          - type: mrr_at_1
            value: 27.357
          - type: mrr_at_10
            value: 36.370999999999995
          - type: mrr_at_100
            value: 37.364000000000004
          - type: mrr_at_1000
            value: 37.423
          - type: mrr_at_3
            value: 34.288000000000004
          - type: mrr_at_5
            value: 35.434
          - type: ndcg_at_1
            value: 27.357
          - type: ndcg_at_10
            value: 46.593999999999994
          - type: ndcg_at_100
            value: 44.317
          - type: ndcg_at_1000
            value: 46.475
          - type: ndcg_at_3
            value: 34.473
          - type: ndcg_at_5
            value: 36.561
          - type: precision_at_1
            value: 27.357
          - type: precision_at_10
            value: 6.081
          - type: precision_at_100
            value: 0.9299999999999999
          - type: precision_at_1000
            value: 0.124
          - type: precision_at_3
            value: 14.911
          - type: precision_at_5
            value: 10.24
          - type: recall_at_1
            value: 24.75
          - type: recall_at_10
            value: 51.856
          - type: recall_at_100
            value: 76.44300000000001
          - type: recall_at_1000
            value: 92.078
          - type: recall_at_3
            value: 39.427
          - type: recall_at_5
            value: 44.639
          - type: main_score
            value: 46.593999999999994
      - task:
          type: Retrieval
        dataset:
          name: MTEB ClimateFEVER
          type: mteb/climate-fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.436
          - type: map_at_10
            value: 29.693
          - type: map_at_100
            value: 32.179
          - type: map_at_1000
            value: 32.353
          - type: map_at_3
            value: 24.556
          - type: map_at_5
            value: 27.105
          - type: mrr_at_1
            value: 37.524
          - type: mrr_at_10
            value: 51.475
          - type: mrr_at_100
            value: 52.107000000000006
          - type: mrr_at_1000
            value: 52.123
          - type: mrr_at_3
            value: 48.35
          - type: mrr_at_5
            value: 50.249
          - type: ndcg_at_1
            value: 37.524
          - type: ndcg_at_10
            value: 40.258
          - type: ndcg_at_100
            value: 48.364000000000004
          - type: ndcg_at_1000
            value: 51.031000000000006
          - type: ndcg_at_3
            value: 33.359
          - type: ndcg_at_5
            value: 35.573
          - type: precision_at_1
            value: 37.524
          - type: precision_at_10
            value: 12.886000000000001
          - type: precision_at_100
            value: 2.169
          - type: precision_at_1000
            value: 0.268
          - type: precision_at_3
            value: 25.624000000000002
          - type: precision_at_5
            value: 19.453
          - type: recall_at_1
            value: 16.436
          - type: recall_at_10
            value: 47.77
          - type: recall_at_100
            value: 74.762
          - type: recall_at_1000
            value: 89.316
          - type: recall_at_3
            value: 30.508000000000003
          - type: recall_at_5
            value: 37.346000000000004
          - type: main_score
            value: 40.258
      - task:
          type: Retrieval
        dataset:
          name: MTEB DBPedia
          type: mteb/dbpedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 10.147
          - type: map_at_10
            value: 24.631
          - type: map_at_100
            value: 35.657
          - type: map_at_1000
            value: 37.824999999999996
          - type: map_at_3
            value: 16.423
          - type: map_at_5
            value: 19.666
          - type: mrr_at_1
            value: 76.5
          - type: mrr_at_10
            value: 82.793
          - type: mrr_at_100
            value: 83.015
          - type: mrr_at_1000
            value: 83.021
          - type: mrr_at_3
            value: 81.75
          - type: mrr_at_5
            value: 82.375
          - type: ndcg_at_1
            value: 64.75
          - type: ndcg_at_10
            value: 51.031000000000006
          - type: ndcg_at_100
            value: 56.005
          - type: ndcg_at_1000
            value: 63.068000000000005
          - type: ndcg_at_3
            value: 54.571999999999996
          - type: ndcg_at_5
            value: 52.66499999999999
          - type: precision_at_1
            value: 76.5
          - type: precision_at_10
            value: 42.15
          - type: precision_at_100
            value: 13.22
          - type: precision_at_1000
            value: 2.5989999999999998
          - type: precision_at_3
            value: 58.416999999999994
          - type: precision_at_5
            value: 52.2
          - type: recall_at_1
            value: 10.147
          - type: recall_at_10
            value: 30.786
          - type: recall_at_100
            value: 62.873000000000005
          - type: recall_at_1000
            value: 85.358
          - type: recall_at_3
            value: 17.665
          - type: recall_at_5
            value: 22.088
          - type: main_score
            value: 51.031000000000006
      - task:
          type: Retrieval
        dataset:
          name: MTEB FEVER
          type: mteb/fever
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 78.52900000000001
          - type: map_at_10
            value: 87.24199999999999
          - type: map_at_100
            value: 87.446
          - type: map_at_1000
            value: 87.457
          - type: map_at_3
            value: 86.193
          - type: map_at_5
            value: 86.898
          - type: mrr_at_1
            value: 84.518
          - type: mrr_at_10
            value: 90.686
          - type: mrr_at_100
            value: 90.73
          - type: mrr_at_1000
            value: 90.731
          - type: mrr_at_3
            value: 90.227
          - type: mrr_at_5
            value: 90.575
          - type: ndcg_at_1
            value: 84.518
          - type: ndcg_at_10
            value: 90.324
          - type: ndcg_at_100
            value: 90.96300000000001
          - type: ndcg_at_1000
            value: 91.134
          - type: ndcg_at_3
            value: 88.937
          - type: ndcg_at_5
            value: 89.788
          - type: precision_at_1
            value: 84.518
          - type: precision_at_10
            value: 10.872
          - type: precision_at_100
            value: 1.1440000000000001
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 34.108
          - type: precision_at_5
            value: 21.154999999999998
          - type: recall_at_1
            value: 78.52900000000001
          - type: recall_at_10
            value: 96.123
          - type: recall_at_100
            value: 98.503
          - type: recall_at_1000
            value: 99.518
          - type: recall_at_3
            value: 92.444
          - type: recall_at_5
            value: 94.609
          - type: main_score
            value: 90.324
      - task:
          type: Retrieval
        dataset:
          name: MTEB FiQA2018
          type: mteb/fiqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 29.38
          - type: map_at_10
            value: 50.28
          - type: map_at_100
            value: 52.532999999999994
          - type: map_at_1000
            value: 52.641000000000005
          - type: map_at_3
            value: 43.556
          - type: map_at_5
            value: 47.617
          - type: mrr_at_1
            value: 56.79
          - type: mrr_at_10
            value: 65.666
          - type: mrr_at_100
            value: 66.211
          - type: mrr_at_1000
            value: 66.226
          - type: mrr_at_3
            value: 63.452
          - type: mrr_at_5
            value: 64.895
          - type: ndcg_at_1
            value: 56.79
          - type: ndcg_at_10
            value: 58.68
          - type: ndcg_at_100
            value: 65.22
          - type: ndcg_at_1000
            value: 66.645
          - type: ndcg_at_3
            value: 53.981
          - type: ndcg_at_5
            value: 55.95
          - type: precision_at_1
            value: 56.79
          - type: precision_at_10
            value: 16.311999999999998
          - type: precision_at_100
            value: 2.316
          - type: precision_at_1000
            value: 0.258
          - type: precision_at_3
            value: 36.214
          - type: precision_at_5
            value: 27.067999999999998
          - type: recall_at_1
            value: 29.38
          - type: recall_at_10
            value: 66.503
          - type: recall_at_100
            value: 89.885
          - type: recall_at_1000
            value: 97.954
          - type: recall_at_3
            value: 48.866
          - type: recall_at_5
            value: 57.60999999999999
          - type: main_score
            value: 58.68
      - task:
          type: Retrieval
        dataset:
          name: MTEB HotpotQA
          type: mteb/hotpotqa
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 42.134
          - type: map_at_10
            value: 73.412
          - type: map_at_100
            value: 74.144
          - type: map_at_1000
            value: 74.181
          - type: map_at_3
            value: 70.016
          - type: map_at_5
            value: 72.174
          - type: mrr_at_1
            value: 84.267
          - type: mrr_at_10
            value: 89.18599999999999
          - type: mrr_at_100
            value: 89.29599999999999
          - type: mrr_at_1000
            value: 89.298
          - type: mrr_at_3
            value: 88.616
          - type: mrr_at_5
            value: 88.957
          - type: ndcg_at_1
            value: 84.267
          - type: ndcg_at_10
            value: 80.164
          - type: ndcg_at_100
            value: 82.52199999999999
          - type: ndcg_at_1000
            value: 83.176
          - type: ndcg_at_3
            value: 75.616
          - type: ndcg_at_5
            value: 78.184
          - type: precision_at_1
            value: 84.267
          - type: precision_at_10
            value: 16.916
          - type: precision_at_100
            value: 1.872
          - type: precision_at_1000
            value: 0.196
          - type: precision_at_3
            value: 49.71
          - type: precision_at_5
            value: 31.854
          - type: recall_at_1
            value: 42.134
          - type: recall_at_10
            value: 84.578
          - type: recall_at_100
            value: 93.606
          - type: recall_at_1000
            value: 97.86
          - type: recall_at_3
            value: 74.564
          - type: recall_at_5
            value: 79.635
          - type: main_score
            value: 80.164
      - task:
          type: Retrieval
        dataset:
          name: MTEB MSMARCO
          type: mteb/msmarco
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 22.276
          - type: map_at_10
            value: 35.493
          - type: map_at_100
            value: 36.656
          - type: map_at_1000
            value: 36.699
          - type: map_at_3
            value: 31.320999999999998
          - type: map_at_5
            value: 33.772999999999996
          - type: mrr_at_1
            value: 22.966
          - type: mrr_at_10
            value: 36.074
          - type: mrr_at_100
            value: 37.183
          - type: mrr_at_1000
            value: 37.219
          - type: mrr_at_3
            value: 31.984
          - type: mrr_at_5
            value: 34.419
          - type: ndcg_at_1
            value: 22.966
          - type: ndcg_at_10
            value: 42.895
          - type: ndcg_at_100
            value: 48.453
          - type: ndcg_at_1000
            value: 49.464999999999996
          - type: ndcg_at_3
            value: 34.410000000000004
          - type: ndcg_at_5
            value: 38.78
          - type: precision_at_1
            value: 22.966
          - type: precision_at_10
            value: 6.88
          - type: precision_at_100
            value: 0.966
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 14.785
          - type: precision_at_5
            value: 11.074
          - type: recall_at_1
            value: 22.276
          - type: recall_at_10
            value: 65.756
          - type: recall_at_100
            value: 91.34100000000001
          - type: recall_at_1000
            value: 98.957
          - type: recall_at_3
            value: 42.67
          - type: recall_at_5
            value: 53.161
          - type: main_score
            value: 42.895
      - task:
          type: Retrieval
        dataset:
          name: MTEB NFCorpus
          type: mteb/nfcorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 7.188999999999999
          - type: map_at_10
            value: 16.176
          - type: map_at_100
            value: 20.504
          - type: map_at_1000
            value: 22.203999999999997
          - type: map_at_3
            value: 11.766
          - type: map_at_5
            value: 13.655999999999999
          - type: mrr_at_1
            value: 55.418
          - type: mrr_at_10
            value: 62.791
          - type: mrr_at_100
            value: 63.339
          - type: mrr_at_1000
            value: 63.369
          - type: mrr_at_3
            value: 60.99099999999999
          - type: mrr_at_5
            value: 62.059
          - type: ndcg_at_1
            value: 53.715
          - type: ndcg_at_10
            value: 41.377
          - type: ndcg_at_100
            value: 37.999
          - type: ndcg_at_1000
            value: 46.726
          - type: ndcg_at_3
            value: 47.262
          - type: ndcg_at_5
            value: 44.708999999999996
          - type: precision_at_1
            value: 55.108000000000004
          - type: precision_at_10
            value: 30.154999999999998
          - type: precision_at_100
            value: 9.582
          - type: precision_at_1000
            value: 2.2720000000000002
          - type: precision_at_3
            value: 43.55
          - type: precision_at_5
            value: 38.204
          - type: recall_at_1
            value: 7.188999999999999
          - type: recall_at_10
            value: 20.655
          - type: recall_at_100
            value: 38.068000000000005
          - type: recall_at_1000
            value: 70.208
          - type: recall_at_3
            value: 12.601
          - type: recall_at_5
            value: 15.573999999999998
          - type: main_score
            value: 41.377
      - task:
          type: Retrieval
        dataset:
          name: MTEB NQ
          type: mteb/nq
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 46.017
          - type: map_at_10
            value: 62.910999999999994
          - type: map_at_100
            value: 63.526
          - type: map_at_1000
            value: 63.536
          - type: map_at_3
            value: 59.077999999999996
          - type: map_at_5
            value: 61.521
          - type: mrr_at_1
            value: 51.68000000000001
          - type: mrr_at_10
            value: 65.149
          - type: mrr_at_100
            value: 65.542
          - type: mrr_at_1000
            value: 65.55
          - type: mrr_at_3
            value: 62.49
          - type: mrr_at_5
            value: 64.178
          - type: ndcg_at_1
            value: 51.651
          - type: ndcg_at_10
            value: 69.83500000000001
          - type: ndcg_at_100
            value: 72.18
          - type: ndcg_at_1000
            value: 72.393
          - type: ndcg_at_3
            value: 63.168
          - type: ndcg_at_5
            value: 66.958
          - type: precision_at_1
            value: 51.651
          - type: precision_at_10
            value: 10.626
          - type: precision_at_100
            value: 1.195
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 28.012999999999998
          - type: precision_at_5
            value: 19.09
          - type: recall_at_1
            value: 46.017
          - type: recall_at_10
            value: 88.345
          - type: recall_at_100
            value: 98.129
          - type: recall_at_1000
            value: 99.696
          - type: recall_at_3
            value: 71.531
          - type: recall_at_5
            value: 80.108
          - type: main_score
            value: 69.83500000000001
      - task:
          type: Retrieval
        dataset:
          name: MTEB QuoraRetrieval
          type: mteb/quora
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 72.473
          - type: map_at_10
            value: 86.72800000000001
          - type: map_at_100
            value: 87.323
          - type: map_at_1000
            value: 87.332
          - type: map_at_3
            value: 83.753
          - type: map_at_5
            value: 85.627
          - type: mrr_at_1
            value: 83.39
          - type: mrr_at_10
            value: 89.149
          - type: mrr_at_100
            value: 89.228
          - type: mrr_at_1000
            value: 89.229
          - type: mrr_at_3
            value: 88.335
          - type: mrr_at_5
            value: 88.895
          - type: ndcg_at_1
            value: 83.39
          - type: ndcg_at_10
            value: 90.109
          - type: ndcg_at_100
            value: 91.09
          - type: ndcg_at_1000
            value: 91.13900000000001
          - type: ndcg_at_3
            value: 87.483
          - type: ndcg_at_5
            value: 88.942
          - type: precision_at_1
            value: 83.39
          - type: precision_at_10
            value: 13.711
          - type: precision_at_100
            value: 1.549
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 38.342999999999996
          - type: precision_at_5
            value: 25.188
          - type: recall_at_1
            value: 72.473
          - type: recall_at_10
            value: 96.57
          - type: recall_at_100
            value: 99.792
          - type: recall_at_1000
            value: 99.99900000000001
          - type: recall_at_3
            value: 88.979
          - type: recall_at_5
            value: 93.163
          - type: main_score
            value: 90.109
      - task:
          type: Retrieval
        dataset:
          name: MTEB SCIDOCS
          type: mteb/scidocs
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 4.598
          - type: map_at_10
            value: 11.405999999999999
          - type: map_at_100
            value: 13.447999999999999
          - type: map_at_1000
            value: 13.758999999999999
          - type: map_at_3
            value: 8.332
          - type: map_at_5
            value: 9.709
          - type: mrr_at_1
            value: 22.6
          - type: mrr_at_10
            value: 32.978
          - type: mrr_at_100
            value: 34.149
          - type: mrr_at_1000
            value: 34.213
          - type: mrr_at_3
            value: 29.7
          - type: mrr_at_5
            value: 31.485000000000003
          - type: ndcg_at_1
            value: 22.6
          - type: ndcg_at_10
            value: 19.259999999999998
          - type: ndcg_at_100
            value: 27.21
          - type: ndcg_at_1000
            value: 32.7
          - type: ndcg_at_3
            value: 18.445
          - type: ndcg_at_5
            value: 15.812000000000001
          - type: precision_at_1
            value: 22.6
          - type: precision_at_10
            value: 9.959999999999999
          - type: precision_at_100
            value: 2.139
          - type: precision_at_1000
            value: 0.345
          - type: precision_at_3
            value: 17.299999999999997
          - type: precision_at_5
            value: 13.719999999999999
          - type: recall_at_1
            value: 4.598
          - type: recall_at_10
            value: 20.186999999999998
          - type: recall_at_100
            value: 43.362
          - type: recall_at_1000
            value: 70.11800000000001
          - type: recall_at_3
            value: 10.543
          - type: recall_at_5
            value: 13.923
          - type: main_score
            value: 19.259999999999998
      - task:
          type: Retrieval
        dataset:
          name: MTEB SciFact
          type: mteb/scifact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 65.467
          - type: map_at_10
            value: 74.935
          - type: map_at_100
            value: 75.395
          - type: map_at_1000
            value: 75.412
          - type: map_at_3
            value: 72.436
          - type: map_at_5
            value: 73.978
          - type: mrr_at_1
            value: 68.667
          - type: mrr_at_10
            value: 76.236
          - type: mrr_at_100
            value: 76.537
          - type: mrr_at_1000
            value: 76.55499999999999
          - type: mrr_at_3
            value: 74.722
          - type: mrr_at_5
            value: 75.639
          - type: ndcg_at_1
            value: 68.667
          - type: ndcg_at_10
            value: 78.92099999999999
          - type: ndcg_at_100
            value: 80.645
          - type: ndcg_at_1000
            value: 81.045
          - type: ndcg_at_3
            value: 75.19500000000001
          - type: ndcg_at_5
            value: 77.114
          - type: precision_at_1
            value: 68.667
          - type: precision_at_10
            value: 10.133000000000001
          - type: precision_at_100
            value: 1.0999999999999999
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 28.889
          - type: precision_at_5
            value: 18.8
          - type: recall_at_1
            value: 65.467
          - type: recall_at_10
            value: 89.517
          - type: recall_at_100
            value: 97
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 79.72200000000001
          - type: recall_at_5
            value: 84.511
          - type: main_score
            value: 78.92099999999999
      - task:
          type: Retrieval
        dataset:
          name: MTEB TRECCOVID
          type: mteb/trec-covid
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.244
          - type: map_at_10
            value: 2.183
          - type: map_at_100
            value: 13.712
          - type: map_at_1000
            value: 33.147
          - type: map_at_3
            value: 0.7270000000000001
          - type: map_at_5
            value: 1.199
          - type: mrr_at_1
            value: 94
          - type: mrr_at_10
            value: 97
          - type: mrr_at_100
            value: 97
          - type: mrr_at_1000
            value: 97
          - type: mrr_at_3
            value: 97
          - type: mrr_at_5
            value: 97
          - type: ndcg_at_1
            value: 92
          - type: ndcg_at_10
            value: 84.399
          - type: ndcg_at_100
            value: 66.771
          - type: ndcg_at_1000
            value: 59.092
          - type: ndcg_at_3
            value: 89.173
          - type: ndcg_at_5
            value: 88.52600000000001
          - type: precision_at_1
            value: 94
          - type: precision_at_10
            value: 86.8
          - type: precision_at_100
            value: 68.24
          - type: precision_at_1000
            value: 26.003999999999998
          - type: precision_at_3
            value: 92.667
          - type: precision_at_5
            value: 92.4
          - type: recall_at_1
            value: 0.244
          - type: recall_at_10
            value: 2.302
          - type: recall_at_100
            value: 16.622
          - type: recall_at_1000
            value: 55.175
          - type: recall_at_3
            value: 0.748
          - type: recall_at_5
            value: 1.247
          - type: main_score
            value: 84.399
      - task:
          type: Retrieval
        dataset:
          name: MTEB Touche2020
          type: mteb/touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.707
          - type: map_at_10
            value: 10.917
          - type: map_at_100
            value: 16.308
          - type: map_at_1000
            value: 17.953
          - type: map_at_3
            value: 5.65
          - type: map_at_5
            value: 7.379
          - type: mrr_at_1
            value: 34.694
          - type: mrr_at_10
            value: 49.745
          - type: mrr_at_100
            value: 50.309000000000005
          - type: mrr_at_1000
            value: 50.32
          - type: mrr_at_3
            value: 44.897999999999996
          - type: mrr_at_5
            value: 48.061
          - type: ndcg_at_1
            value: 33.672999999999995
          - type: ndcg_at_10
            value: 26.894000000000002
          - type: ndcg_at_100
            value: 37.423
          - type: ndcg_at_1000
            value: 49.376999999999995
          - type: ndcg_at_3
            value: 30.456
          - type: ndcg_at_5
            value: 27.772000000000002
          - type: precision_at_1
            value: 34.694
          - type: precision_at_10
            value: 23.878
          - type: precision_at_100
            value: 7.489999999999999
          - type: precision_at_1000
            value: 1.555
          - type: precision_at_3
            value: 31.293
          - type: precision_at_5
            value: 26.939
          - type: recall_at_1
            value: 2.707
          - type: recall_at_10
            value: 18.104
          - type: recall_at_100
            value: 46.93
          - type: recall_at_1000
            value: 83.512
          - type: recall_at_3
            value: 6.622999999999999
          - type: recall_at_5
            value: 10.051
          - type: main_score
            value: 26.894000000000002
TensorBlock

Website Twitter Discord GitHub Telegram

BeastyZ/e5-R-mistral-7b - GGUF

This repo contains GGUF format model files for BeastyZ/e5-R-mistral-7b.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4011.

Our projects

Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
πŸš€ Try it now! πŸš€
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
e5-R-mistral-7b-Q2_K.gguf Q2_K 2.719 GB smallest, significant quality loss - not recommended for most purposes
e5-R-mistral-7b-Q3_K_S.gguf Q3_K_S 3.165 GB very small, high quality loss
e5-R-mistral-7b-Q3_K_M.gguf Q3_K_M 3.519 GB very small, high quality loss
e5-R-mistral-7b-Q3_K_L.gguf Q3_K_L 3.822 GB small, substantial quality loss
e5-R-mistral-7b-Q4_0.gguf Q4_0 4.109 GB legacy; small, very high quality loss - prefer using Q3_K_M
e5-R-mistral-7b-Q4_K_S.gguf Q4_K_S 4.140 GB small, greater quality loss
e5-R-mistral-7b-Q4_K_M.gguf Q4_K_M 4.368 GB medium, balanced quality - recommended
e5-R-mistral-7b-Q5_0.gguf Q5_0 4.998 GB legacy; medium, balanced quality - prefer using Q4_K_M
e5-R-mistral-7b-Q5_K_S.gguf Q5_K_S 4.998 GB large, low quality loss - recommended
e5-R-mistral-7b-Q5_K_M.gguf Q5_K_M 5.131 GB large, very low quality loss - recommended
e5-R-mistral-7b-Q6_K.gguf Q6_K 5.942 GB very large, extremely low quality loss
e5-R-mistral-7b-Q8_0.gguf Q8_0 7.696 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/e5-R-mistral-7b-GGUF --include "e5-R-mistral-7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/e5-R-mistral-7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'