Oolel-v0.1-GGUF / README.md
morriszms's picture
Update README.md
b1ebbec verified
metadata
library_name: transformers
language:
  - wo
  - en
license: apache-2.0
pipeline_tag: text2text-generation
tags:
  - TensorBlock
  - GGUF
base_model: soynade-research/Oolel-v0.1
TensorBlock

Website Twitter Discord GitHub Telegram

soynade-research/Oolel-v0.1 - GGUF

This repo contains GGUF format model files for soynade-research/Oolel-v0.1.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4823.

Our projects

Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
πŸš€ Try it now! πŸš€
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

Model file specification

Filename Quant type File Size Description
Oolel-v0.1-Q2_K.gguf Q2_K 3.016 GB smallest, significant quality loss - not recommended for most purposes
Oolel-v0.1-Q3_K_S.gguf Q3_K_S 3.492 GB very small, high quality loss
Oolel-v0.1-Q3_K_M.gguf Q3_K_M 3.808 GB very small, high quality loss
Oolel-v0.1-Q3_K_L.gguf Q3_K_L 4.088 GB small, substantial quality loss
Oolel-v0.1-Q4_0.gguf Q4_0 4.431 GB legacy; small, very high quality loss - prefer using Q3_K_M
Oolel-v0.1-Q4_K_S.gguf Q4_K_S 4.458 GB small, greater quality loss
Oolel-v0.1-Q4_K_M.gguf Q4_K_M 4.683 GB medium, balanced quality - recommended
Oolel-v0.1-Q5_0.gguf Q5_0 5.315 GB legacy; medium, balanced quality - prefer using Q4_K_M
Oolel-v0.1-Q5_K_S.gguf Q5_K_S 5.315 GB large, low quality loss - recommended
Oolel-v0.1-Q5_K_M.gguf Q5_K_M 5.445 GB large, very low quality loss - recommended
Oolel-v0.1-Q6_K.gguf Q6_K 6.254 GB very large, extremely low quality loss
Oolel-v0.1-Q8_0.gguf Q8_0 8.099 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/Oolel-v0.1-GGUF --include "Oolel-v0.1-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/Oolel-v0.1-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'