GGUF
TensorBlock
GGUF
Eval Results
morriszms's picture
Update README.md
50aad3f verified
metadata
license: mit
datasets:
  - ryandt/mistral_symbolicLogic_5_7_9_short
tags:
  - TensorBlock
  - GGUF
base_model: ryandt/MusingCaterpillar
model-index:
  - name: MusingCaterpillar
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 72.53
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 88.34
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 65.26
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 70.93
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 80.66
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 62.24
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=ryandt/MusingCaterpillar
          name: Open LLM Leaderboard
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

ryandt/MusingCaterpillar - GGUF

This repo contains GGUF format model files for ryandt/MusingCaterpillar.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Our projects

Awesome MCP Servers TensorBlock Studio
Project A Project B
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
πŸ‘€ See what we built πŸ‘€ πŸ‘€ See what we built πŸ‘€
## Prompt template

Model file specification

Filename Quant type File Size Description
MusingCaterpillar-Q2_K.gguf Q2_K 3.361 GB smallest, significant quality loss - not recommended for most purposes
MusingCaterpillar-Q3_K_S.gguf Q3_K_S 3.915 GB very small, high quality loss
MusingCaterpillar-Q3_K_M.gguf Q3_K_M 4.354 GB very small, high quality loss
MusingCaterpillar-Q3_K_L.gguf Q3_K_L 4.736 GB small, substantial quality loss
MusingCaterpillar-Q4_0.gguf Q4_0 5.091 GB legacy; small, very high quality loss - prefer using Q3_K_M
MusingCaterpillar-Q4_K_S.gguf Q4_K_S 5.129 GB small, greater quality loss
MusingCaterpillar-Q4_K_M.gguf Q4_K_M 5.415 GB medium, balanced quality - recommended
MusingCaterpillar-Q5_0.gguf Q5_0 6.198 GB legacy; medium, balanced quality - prefer using Q4_K_M
MusingCaterpillar-Q5_K_S.gguf Q5_K_S 6.198 GB large, low quality loss - recommended
MusingCaterpillar-Q5_K_M.gguf Q5_K_M 6.365 GB large, very low quality loss - recommended
MusingCaterpillar-Q6_K.gguf Q6_K 7.374 GB very large, extremely low quality loss
MusingCaterpillar-Q8_0.gguf Q8_0 9.550 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/MusingCaterpillar-GGUF --include "MusingCaterpillar-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/MusingCaterpillar-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'